TR RIE

Author: £212-1+18 3K 2021011056
Supplement: Jim Kurose, Keith Ross: {Computer Networking: A Top-Down Approach (8™ edition))

HAZRE S

1. Network Overview
network edge, network core (packet switching, circuity switching)
packet delay, packet loss, throughput

2. Application Layer
HTTP (HyperText Transfer Protocol): request & reponse types

stateful protocol: cookies

SMTP (Simple Mail Transfer Protocol), IMAP (Internet Mail Access Protocol)

DNS (Domain Name system): iterated, recursive

others: P2P, DASH (Dynamix Adaptive Streaming, video streaming), CDN (content distribution
networks)

multiplexing / demultiplexing (transport layer)
application, process, port, socket

3. Transport Layer
checksum calculation
multiplexing / demultiplexing (transport layer): application, process, port, socket

o RDT (reliable data transfer)
paradigm: Stop-and-Wait, Go-back N, Selective Repeat
application: tcp_rdt, fast restransmit (3 unACKed)

o congestion control / {HZEEH|
paradigm: End-End, Network-Assisted
(cwnd) AIMD (Additive Increase Multiplicative Decrease) (Reno, Tahoe), CUBID, delay-
based (measured throughput vs. uncongested throughput); ECN (Explicit Congestion
Notification) (also network-assisted)

o X% : flow control (rwnd)

4. Network Layer - routing

o Data Plane:
DHCP allocates host-part IP address, ICANN allocates subnet-part IP address; NAT
(Network Address Translation)

routers: destination-based forwarding (longest prefix matching), generalized forwarding
(orchestrated table)

input, switching (memory, bus, interconnection), queuing (buffering management), pkt
shceduling (FIFO, priority, RR / Round Robin, WFQ / weighted fair queuing)

SDN (software defined network): match + action, OpenFlow protocol

o Control Plane:
algorithms: Dijkstra's Link State (con: oscillation), Bellman-Ford's Distance Vector (con:
count-to-infinity, black-holing)

intra-domain: RIP, OSPF (hierarchical OSPF); inter-domain: BGP (Border Gateway
Protocol) (iBGP, eBGP, hot-potato routing -priority)

af://n0

ICMP (Internet control message protocol): carried in IP datagrams

5. Link Layer - switching

EDC (error detection and correction): two-dimensional parity check, CRC (cyclic redundency
check)

MAC (Multiple Access Control): FDMA (Frequency Division Mutiple Access), TDMA (Time
Division Mutiple Access), slotted ALOHA (synchronization, 37%), pure ALOHA (18%), CSMA
(Carrier Sense Multiple Access), CSMA/CD (with Collision Detection, decentralized, more
efficient than ALOHA), taking turns

ARP (address resolution protocol): broadcasting + self-learning
Ethernet: (MAC) unslotted CSMA/CD with binary backoff; connectionless, unreliable; switches
functions

VLAN (Virtual LAN): MPLS (Multiprotocol Label Switching), link layer protocol (between IP
routing layer and MAC Ethernet layer), use label for fast lookup rather than IP routing

Wireless LAN
challenges: decreased signal strength (SNR (Signal-to-Noise Ratio), BER (Bit Error Rate)),
inference from other sources (hidden terminal problem, exposed terminal problem)

BSS (Basic Service Set): BS (Base Station) / AP (Access Point), infrastructure mode and ad hoc
mode

CDMA (Code Division Multiple Access)

CSMA/CS (Carrier Sense Multiple Access with Collision Avoidance): DIFS and SIFS, RTS
(Request-To-Send) - CTS (Clear-To-Send)

4G and 5G
LTE (Long-Term Evolution) standard

6. BIHEIRZANTENMERIFR
www: Tim Berners-Lee
Ethernet: Bob Metcalfe
TCP/IP: Vinton Cerf

10458 + G¥I

Chapter1: Network Overview

1. a "nuts and bolts" view:

af://n18
af://n19

RS, WEKERET ISP4£#i(Internet Service

i Provid
Billions of connected rovider)g[)* EKWHE%&E{

mobile network

compUtlng devices: < I.-"national or global ISP
" hosts = end systems =y |
* running network apps at g |
= Core Network »
Internet’s “edge” < s

AT \ & BAR. 0%
Packet switches: forward
packets (chunks of data)

» routers, switches 3z#atl]. BSehss

home network

Communication links k& 4% provider ||
net__"!":'rk __datacenter
network

s fiber, copper, radio, satellite
= transmission rate: bandwidth

Networks :
ente rprise

» collection of devices, routers, network nd
links: managed by an organization

devices/apps, hosts/end systems: Network edge
routers / switches: Packet switches as communication links (bandwidth)
local / regional ISP: access to Core Network

=> [Internet: network of networks (interconnected ISPs)

2. protocols and standards overview:

PERERN: NB-loTHHY
(AE5G. WiFi)
HEBE BREX L

The Internet: a “nuts and bolts” view ‘s sz s

4G: LTE (long term evolution) vs WiMAX 5GHRAESI: BUMEE/FEER

mobile network
4G

= Internet: “network of networks”]< wational or global 15P
* Interconnected ISPs S b =5
FEBIRL, EIP, E‘E{T%iﬁﬁﬁ Eay Y~ = .
= protocols are everywhere =~ *#EB S I = N\ reaming
B . Yi
- control sending, receiving of g
messages =) -
* e.g., HTTP (Web), streaming video, e
Skvper TCP; |P; WlF'; 4Gr Ethernet R R home network
1.0/2.080 e E L EZTCP

B T3.0%5L T GooglefQuick HTTP
= Internet standards E4RERN o

CSMA/CD Ethernet
b RFC‘ Request fOl' COmmentS Carrier Sense Multiple Access

with Collision Detection

* IETF: Internet Engineering Task AR R BT SHARAA e £4Q° | P
Force nelt ork | =g Congestion control
§oRT2: IEEE, IETF Smm— Emultiplexing £

Carrier Sense Multiple WiFi Floor control

Access with Collision Avoid

The Internet is a decentralized network without a single governing body or organization that has
complete control over it. Key organizations and standards bodies playing important roles are:

1. Internet Corporation for Assigned Names and Numbers / ICANN: managing DNS and
allocation of IP addresses

2. Internet Engineering Task Force / IETF: community-driven, open standards organization that
develops and promotes Internet standards

3. Internet Society / ISOC: promote the open development of the Internet

ntroduction: 1-!

af://n23

4. Regional Internet Registries / RIRs: manage IP address blocks within respective regions.
There are 5 RIRs globally.
5. Request for Comments / RFC: docs describing protocols, developed by IETF

e Protocols

Using OSI (Open Systems Interconnection) model to introduce these protocols:

ISO/0SI reference model

Two layers not found in Internet

protocol stack! application
. - presentation
= presentation: allow applications to S——
interpret meaning of data, e.g., encryption, session
compression, machine-specific conventions transport
= session: synchronization, checkpointing, network
recovery of data exchange K
= Internet stack “missing” these layers! ,
physical

* these services, if needed, must be
implemented in application The seven layer OSI/ISO

reference model
* needed?

o Application-Layer Protocols:
HTTP (HyperText Transfer Protocol): web
Skype: inter-household, private protocol
IMAP (Internet Message Access Protocol): email protocol, email access
SMTP (Simple Mail Transfer Protocol): email protocol, email delivery
DNS (Domain Name System): domain names to IP address translation
o Transport-Layer Protocols:

TCP (Transmission Control Protocol): server-client

UDP (Unreliable Datagram Protocol): unreliable but faster
o Network-Layer Protocols:

IP (Internet Protocol): rout packest across networks
o Link-layer / Physical Protocols:

WiFi (Wireless Fidelity): router-host wireless communication technology
link-layer protocol: IEEE802.11 (defines wireless LANs)
physical-layer protocol: IEEE802.11

Ethernet: local area network (LAN) by physical cable transmission
link-layer protocol: IEEE802.3 (called Ethernet protocol)
physical-layer protocol: IEEE802.3 (cable type and length...)

PPP (Point-to-Point Protocol): computer ISP using telephone lines

o 5G: defines physical, data-link, network, and transport layer protocols
¢ Internet Standards

o RFC (Request for Comments): documents maintained by organizations
o [|ETF (Internet Engineering Task Force): primary RFC designers

1.1 Internet Structure

af://n62

1.1.1 Network Edge

Components: hosts / end-devices / clients, servers (data center)
End systems are connected to edge routers.

e Access Network: wired or wireless communication links, connecting end devices to the
network infrastructure

o Cable-based Access: SLHHERE EM (powerline communication)
HFC: hybrid fiber coax
CMTS: cable modem termination system
FDM: frequency division multiplexing
o DSL / Digital Subsriber Line
use existing telephone lines to transmit data
o Home Networks
WiFi wireless access point + Wired Ethernet + router, firewall, NAT + cable or DSL
modem (=&— /3T, WiFiEiy)
via a base station (aka. access point): wireless local area networks (WLANs) (B#i{#ERBHY
BWIiFi5~6, WIF7IEfE4EF=, WIF8IEFEHIEINAE) , Wide-area cellular access networks
(—MAGEILREEZRS00m~2km43)
o Data Center Networks

e Customer Network: under control of the end users (e.g., home / enterprise network)

1. Host: sends packets of data
/ V two packets,
T — /L bits each

w

| B
host
R: link transmission rate
I 5t B —4~f/package K 411K
packet time needed to L (bits) —MER (100) : 100k
transmission = transmit L-bit = — —/bitky IR {5 4EEE: 200m
delay packet into link R (bits/sec)

L(bit
Packet Transmission Delay = —(its)
R(bits/sec)

R: link transmission rate, link capacity, link bandwidth
L: length of a packet

2. Links: physical media

bit, physical link, guided media, unguided media, TP (Twisted Pair)
Coaxial cable, Fiber optic cable, Wireless radio, Radio link types...

af://n63
af://n80
af://n85

1.1.2 Network Core

Components: interconnected routers, network of networks

Key Functions:
e Forwarding / 8% aka., switching, local action via local forwarding table (which is a

"header value - output link" table)
e Routing / E&H: global action via routing algorithms
B
Routing:

®* global action:
determine source-
destination paths
taken by packets

= routing algorithms

routing algorithm
5
Forwarding: —— |
= aka “switching”
® Jocal action:
move arriving
packets from
router’s input link

to appropriate
router output link

local forwarding table
header value |output link
0100
0101

0111
1001

SR W

destination address in arriving
packet's header

1. Packet Switching
store-and-forward: entire packet must arrive at router before it can be transmitted to next

link

-’---HJ ———

321 R
source = o—————————— = destination
% R bps b R bps %

pps : packet per second
bps : bit per second
characteristic: on-demand allocation (packetized data, connectionless / no dedicated path before

L bits
per packet

data transmission, variable delay, shared resources)

2. Circuit Switching
end-end resources allocated to, reserved for “call” between source and destination

af://n88
af://n98
af://n104

works g

e FDM / Frequency Division Multiplexing

4 uysers BEOICON

frequency

time

e TDM / Time Division Multiplexing

time

frequency

characteristic: reserved resources (dedicated path, connection-oriented, predictable delay)

3. Internet Structure

e Tier-1 Commercial ISPs: national and international coverage
ISPs and regional ISPs connected to each other via IXP (Internet exchange points) and
peering link, finally connected to access ISP

e Content Provider Network: private networks that: data centers => internet
e.g., Google

Tier 1 ISP

Regional ISP Regional ISP

/1N /)

access access access access access access access access
ISP ISP ISP ISP ISP ISP ISP ISP

af://n116

1.2 Packet Delay and Loss
—PMEB—RR1KBR/
1.2.1 Packet Delay

EREER / routers: layer3f9iRdE. HES, BNE, ETHEBEHH
LA / switchers: layer2f9iRdE, [EEWR, £RERSDER
repeaters: layer1fy 3@]&1&%. amplify and regenerate data

«— propagation — ;
!

nodal i m?l»agﬂ?ﬂm%%gginf‘ et ﬁaﬁﬁﬁgt R
processing queueing Hanniseion delay e e w=

transmission

TEEAER (ki)
HEBA « SRER ¢ HEBL

(PE-=H) 'aﬁsam 20011’9
Anodal = Fproc + Agueve + Grrans ¥ Tprop T 526EE 0 Baspmsis
fir, Gooy \eﬁjao&, 9«* Jlt
AHIRET FE HEBA BT IE &% IE &t IiE Aﬁ%ﬁgiﬂﬁ‘iﬂ#ﬁ. 501-5

* dproc: nodal processing / QMERFFE: < ms
check bit errors, determine output link
2Rl EE5000/51TRYBSEZR, ALE3005 M/

* dgueue: queueing delay / HEBABZE: 20ms (domestic), 200ms (international)
time waiting for transmission, depends on the congestion level of router

L-a arrival rate of bits

traf fic intensity = =
11 Y R service rate of bits

average queueing delay

traffic intensity = La/R 1

Visualization: tracert cmu.edu
This traceroute program provides delay measurement from source to router along
end-end Internet path towards destination.

* sends three packets that will reach router i on path towards
destination (with time-to-live field value of /)

* router i will return packets to sender
* sender measures time interval between transmission and reply

¢ d¢rans: transmission delay / {EAJHE = 5
happens when J@iZR-£ & HEAIAHE

* dprop: Propagation delay / {SHB5E = <
d: length of physical link

s: propagation speed (~2*108 m/sec)

%IEJ:%%I:IZ%GE E’JETI]

af://n124
af://n127

1.2.2 Packet Loss

o Buffer Overflow: 0%~100%

e Hardware Error: reversed bytes, cannot pass CRC verification, 0.04%

BEEZENEE" (bitwise exclusive or) #3{8%|—/ check packet, EIHIMNRET— N
8, TeETH, SBILUNRNEFRBTMEHNRNE
finite field: ALALIUEFREERMENEME (BEn 1)

o WiFi air interface: 15% (which is severe!)

e on purpose: early congestion control, send warnings when buffer is to reach its limit

1.2.3 Throughput

Throughput / Z&FItE: rate (bits/time unit) at which bits are being sent from sender to
receiver

A

pipe that can carry pipe t|hat can carry
fluid at rate fluid at rate

server sends bits (R, bits/sec) (R.bits/sec)

(fluid) into pipe

10 connections (fairly) share
backbone bottleneck link R bits/sec

bottleneck link: link on end-end path that constrains end-end throughput

Throughput = min{R.(client), R,(server)}

1.3 Network Security

1. 98IE: NHNEHkst

2. BYINE (APT/ Advanced Persistent Threat) : KHREY. BINiE. BHELENKDT; BEAs
B, RSEAN, FEEET (BBNOS)

3. KT TE(RAIERYE MG _EIRIREED

4 (HAHEINE . IRBITUUNREE T aEoodRY, RRIET

Bt BokiE: EiE (GIEREERRERER)

af://n143
af://n155
af://n163

e Attacks
Packet "Sniffing": S3ENEIE
IP Spoofing: {hi&S %
Denial of Service (DoS): PEKTARSSIZEE (DDoS / Distributed Denial of Service)
Others: playback attack (Alice - Attacker - Bob), Digital Signatures
e Defense
CIA standard:
Confidentiality / JNz%
Integrity checks / 5528
Access restrcitions / iia)EH] (RREZETRFABMERD)
Methods: DES (Data Encryption Standard, or 3DES), RSA (#&IZ& modular algorithm (K%
FIREEEDHR) XIFRINZE Sk session keys)

1.4 Internet Layers

=R% ® gpplication: supporting network applications
* HTTP, IMAP, SMTP, DNS

application
= ® transport: process-process data transfer
* TCP, UDP BHES. A, BRFIIE (E) transport
waR - m petwork: routing of datagrams from source to
destination Puex e

* IP, routing protocols

wsass m [ink: data transfer between neighboring
network elements physical
. Ethernet, 80211 (W|F|), PPP point to point protocol

w2z ™ physical: bits “on the wire”

link

soyrce Encapsulation: an
message | M appligation .
awaupen Sooment (M| M trangport end'end view
%gi\ﬁﬁggﬁ datagram [Hy] H] ™ net ork
frame [H[HJH[M lingk
physical
link
physical E“‘-’Z\
switch %##
destination HH] ™ NETWOTrK
M | |dpplication [H[H H] ™] link Hol Hi| ™
H] wm | [fransport physical g{
H[H] ™] | [network
|HI H [H ™ l link router s

Chapter2: Application Layer

af://n181
af://n186

2.1 Paradigms

IPHEALFERYRZ RN, FAME—, AILRIESCAREH TR
MACHBUEEROEREFibtE, BESIKE—E, FAATLIATER RHHEHTETEXN)

FH: —RE—PwIfi-ER, —PNAKKR-E
e B2 /KE, B/ Nip address

S ECip address——423 ERSFIRIAI pithik
2.1.1 Client-Server Paradigm

classical protocol: Dynamic Host Configuration Protocol (DHCP)

e server
always-on host
permanent IP address
often in data centers, for scaling
e clients
contact, communicate with server
may be intermittently connected
may have dynamic IP address
do NOT communicate directly with each other
Examples: HTTP, IMAP, FTP (File Transfer Protocol, {R&53&)

2.1.2 Peer-Peer Architecture

e characteristics
no always-on server
arbitrary end systems directly communicate
self scalability: new peers bring new service capacity, as well as new service demands
complex management: peers are intermittently connected and change IP addresses
Examples: P2P file sharing

e last-coupon problem (not really mentioned on the internet)

2.1.3 Processes Communicating

Process: program running within a host

e C(Clients and Servers
client process: process that initiates communication
server process: process that waits to be contacted
e Methods
within same host, two processes communicate using inter-process communication
(defined by OS)
processes in different hosts: communicate by exchanging messages

1. Sockets

process sends/receives messages to/from its socket

af://n187
af://n192
af://n201
af://n208
af://n216

application

EFHE

#IER
|" m

W

Shmt

7t

application

socket \ i
1

controlled by
app developer

controlled

Internet

by OS

e identifier: unique to each process to receive messages
identifier includes IP address and port numbers associated with process on host.
Example port numbers: HTTP server - 80 ; mail server - 25

2. General Principles

e content:

types of messages exchanges: request, response...
message syntax && semantics && rules
open protocols / proprietary protocols (e.g., Skype, Zoom)

® purpose:

data integrity, timing, throughput, security

£

file transfer/download

application data loss throughput time sensitive?
no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

streaming audio/video
interactive games
text messaging

underlying transport protocols:

application

loss-tolerant

audio: 5Kbps-1Mbps

yes, 10’s msec

video:10Kbps-5Mbps

same as above
Kbps+
elastic

loss-tolerant
loss-tolerant
no loss

application
layer protocol

yes, few secs
yes, 10’s msec
yes and no

transport protocol

file transfer/download
e-mail

Web documents
Internet telephony

streaming audio/video
interactive games

2.2 Specific Analysis

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7320]

SIP [RFC 3261], RTP [RFC
3550], or proprietary
HTTP [RFC 7320], DASH
WOW, FPS (proprietary)

TCP
TCP
TCP
TCP or UDP

TCP
UDP or TCP

af://n223
af://n233

2.2.1 Web and HTTP

Web: web page consists of objects, each of which can be stored on different Web servers.
Also, web page consists of base HTML-file which includes several referenced objects, each
addressable by a URL, e.g., eee.someschool.edu (hostname) /someDept/pic.gif (path
name)

HTTP is Web's application-layer protocol

Paradigm: client-server model

HTTP: hypertext transfer protocol
= Web’s application-layer protocol q/

= client/server model: p:m’n%
* client: browser that requests, Firefox b“’“’m
receives, (using HTTP protocol) and e
“displays” Web objects
* server: Web server sends (using

HTTP protocol) objects in response
to requests

os° server running
% ey Apache Web
server

iPhone running
Safari browser

1. HTTP overviews

e uses TCP
client initiates TCP connection (creates socket) to server, port 80
server accepts TCP connection from client
HTTP messages exchanged between browser (client) and Web server (server)
TCP connection closed

3.0E2ETFQuickfy (1EmEmY)

e stateless
server maintains no information about past client requests

¢ classification: non-persistent vs persistent

Definition:
RTT / Round Trip Time: time for a small packet to travel from client to server and back

Non-persistent: downloading multiple objects required multiple connections
BF—"Nserver objectiBHEERIRFE TCPIERE overheadiB 2L ARY

response time = 2RTT + file transmission time

<4 E

—

initiate TCP
connection

RTT

request file —

RTT-

file received —31

v v

time time

af://n234
af://n240

Persistent: multiple objects can be sent over single TCP connection between client and that
server

—IRESLEEA LUE RS Mobjects

HTTP1.1: TS referenced objects REE1/MRTTHIZE

Socket Programming with TCP

Python version:

from socket import *

serverName = ’servername’
serverPort = 12000
client

clientSocket = socket(AF_INET, SOCK_STREAM) # using IPv4 (different hosts),
type = TCP, 0S would create the port number for the client socket
clientSocket.connect((serverName, serverPort))

sentence = input(’Input lowercase sentence:’)
clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print(’From Server: ’, modifiedSentence.decode())

clientSocket.close()

server
serversSocket = socket(AF_INET, SOCK_STREAM)
serversSocket.bind((’’,serverpPort))
serverSocket.listen(1l) # maximum number of queued connections = 1
print(’The server is ready to receive’)
while True:
connectionSocket, addr = serverSocket.accept()
sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.encode())
connectionSocket.close()

Comparison with UDP:

from socket import *
serverName = ’servername’
serverPort = 12000

client

clientSocket = socket(AF_INET, SOCK_DGRAM) # type = UDP
message = input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(modifiedMessage.decode())

clientSocket.close()

server
serverSocket = socket(AF_INET, SOCK_DGRAM) # type = UDP
serversSocket.bind((’’, serverpPort))

print(”The server is ready to receive”)

while True:
message, clientAddress = serversocket.recvfrom(2048)
modifiedMessage = message.decode() .upper()
serversSocket.sendto(modifiedMessage.encode(), clientAddress)

C++ version:

#include <arpa/inet.h>
#include <pthread.h>

#define PORT 8888
#define CLIENT_IP "183.173.19.162"
#define BUFFER_SIZE 1024

#define SERVER_PORT 8888
#define MAX_QUEUE 200
#define mMy_IP "183.173.19.162"

// client
int main(Q) {

char buffer[BUFFER_SIZE];

struct sockaddr_in serv_addr;

int sd; // client socket descriptor

sd = socket(AF_INET, SOCK_STREAM, 0); // protocol chosen automatically

serv_addr.sin_family = AF_INET;

serv_addr.sin_port = htons(PORT); // host byter order => network byte
order

inet_pton(AF_INET, CLIENT_IP, &serv_addr.sin_addr); // presentation
format (CLIENT_IP) => network byte order (&serv_addr.sin_addr)

connect(sd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)); // ret=0
on success

send(sd, buffer, BUFFER_SIZE, 0); // flag = 0

read(sd, buffer, BUFFER_SIZE);

//server
int main() {
int sd; // server socket descriptor
int opt = 1;
int new_socket;
struct sockaddr_in address;
sd = socket(AF_INET, SOCK_STREAM, 0);
setsockopt(sd, SOL_SOCKET, SO_REUSEADDR & SO_REUSEPORT, (char*)&opt,
sizeof(opt)); // set REUSEADDR and REUSEPORT to opt=1
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(MY_IP);
address.sin_port = htons(SERVER_PORT) ;
bind(sd, (struct sockaddr*)&address, sizeof(address));
Tisten(sd, MAX_QUEUE);

pthread_t thread_id; // compile: -pthread
while ((new_socket = accept(sd, (struct sockaddr*)&address,
(sockTlen_t*)&addrlen))) {
pthread_create(&thread_id, NULL, connection_handler,
(void*)&new_socket); // pass arg=new_socket to connection_handler
pthread_join(thread_id, NULL); // exit status of thread == NULL

void* connection_handler(void* socket) {
int sd = *(int*)socket;
int number;

char* message;

char buffer[BUFFER_SIZE];

char response[RESPONSE_SIZE];

int read_size = recv(sd, buffer, BUFFER_SIZE, 0);
// do something

send(sd, response, strlen(response), 0);
close(sd);

2. Two Types: Request && Response

e HTTP request message
request line: (GET / i&3K, HEAD commands / ##iA%§#E, POST / &, PUT / E5)

get, post, conditional-get, commands...

method |[sp| URL sp| version |ocr|If Iriig“eSt
header field name value |cr| If N
1 1 header
T T lines
header field name value |cr| If
cr|If
e entity body =~ body
FEpost R Foet A

GET /index.html HTTP/1.1

Host: www.example.com

If-Modified-Since: Sat, 20 May 2023 12:00:00 GMT # conditional GET
User-Agent: Mozilla/5.0 (Windows NT 10.0; win64; x64) Applewebkit/537.36
(KHTML, Tike Gecko) Chrome/91.0.4472.124 safari/537.36

Accept: text/html,application/xhtml+xml

Accept-Language: en-US,en;q=0.9

Accept-Encoding: gzip, deflate

Connection: keep-alive

arriage return character
request line (GET, POST,) /kne feed character

GET /index.html HTTF/1.1\r\
HE&D commands] Host: www—net.cs.tmass.ed‘u\r\n

User—-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n
header Accept: mt/hm(aﬂﬂlication/mmmv\r\n
lines | Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n

\r\n

«—— carriage return, line feed at start of
line indicates end of header lines

Hrh: cr¥&/Rcarriage return, 1fZ&7x1line fitting

o GET method: include user data in URL field of HTTP GET request message (following a
7", e.g., www.somesite.com/animalsearch?monkeys

af://n262

HEAD method: requests headers (only) that would be returned if specified URLs were
requested with an HTTP GET method.

POST method: user input sent from client to server via entity body

PUT method: uploads new file (object) or completely replaces old files (stated in URL
section) to server via entity body

(with cache) Conditional GET: don't send object if browser has up-to-date cached
version by sending an if-modified-since message
E server

object
not

client 5 ;
Goal: don’t send object if browser
has up-to-date cached version
* no object transmission delay (or use

HTTP request msg
If-modified-since: <date>

of network resources) HTTP response — rrz)oetilof:d
. . “ HTTP/1.0
= client: specify date of browser- 304 Not Modified <date>

cached copy in HTTP request
If-modified-since: <date>

. se’:ver".rESponse contains no . If-modified-since: <date> —, object
object if browser-cached copy is modified
Up—tO-d ate: HTTP response — after

- K d
HTTP/1.0 304 Not Modified TR/ 0 20001 et

HTTP request msg

e HTTP response message

HTTP/1.1 304 Not Modified

Date: Sun, 21 May 2023 15:30:00 GMT

Server: Apache/2.4.29 (Unix)
Connection: keep-alive
ETag: "abcl23"

status line (protocol —— yprp/1.1 200 ox

status code status phrase} Date: Tue, 08 Sep 2020 00:53:20 GMT
Server: Apache/2.4.6 (Centos)
OpenSSL/1.0.2k-fips PHP/7.4.9
mod perl/2.0.11 Perl/v5.16.3
header | Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT
lines | ETag: "abb-52d01578%ee9e"
BAccept-Ranges: bytes
Content-Length: 2651
Content-Type: text/html; charset=UTF-8
\r\n
data, e.g., requested —————— data data data data data ...

HTML file

o Status Codes

200 oK :request succeeded, requested object later in this message

300 Moved Permanently :requested object moved, new location specified later in this
message (in Location: field)

400 Bad Request : request msg not understood by server, probably due to error
format

404 Not Found: requested document was not found on this server

505 HTTP Version Not Supported

o wsl codes

nc -v gaia.cs.umass.edu 80:opens TCP connection to port 80 (default HTTP server
port) at gaia.cs.umass.edu, anything typed in will be sent

GET /kurose_ross/interactive/index.php HTTP/1.1

Host: gaia.cs.umass.edu

: by typing this in (hit carriage return twice), you send this minimal (but complete) GET
request to HTTP server

3. Stateful Protocol: cookies

e Four components
1 cookies header line of HTTP response message
2 cookie header line in next HTTP request message
3 cookie files kept on user's host, managed by user’s browser
4 backend databasese at Web site

client H
server

T usual HTTP request msg L Amazon server
i —

cookie file —— creates D ~
| usual HTTP response 1678 foruser create backend
ryrml | set-cookie: 1678 entry . database
amazon 1678 ~
— usual HTTP request msg ki -
j cookie: 1678 |, cooxe access
i . — specific
.__J usual HTTP response msg (action /
one week later: access
ebay 8734 — 1 usual HTTP request msg)
amazon 1678 cookie: 1678 L, cookie-
specific
‘_J usual HTTP response msg | action
\d Y

Applican
e tracking users' behavior
first-party cookies: track user behavior on a given website
third party cookies: track user behavior across multiple websites (can be disabled by
browsers), created by a domain other than the specific website

GDPR (EU General Data Protection Regulation): when cookies can identify an individual,
cookies are considered personal data, subject to GDPR personal data regulations

¢ alternative: Web caches
Goal: satisfy client requests without involving origin server

origin
server

client

Web cache / proxy servers: user can configure browser to point to a local Web cache
server tells cache object's allowable caching in response header:

af://n296

Cache-Control: max-age=<seconds>

Cache-Control: no-cache

compared with "buying a faster access link": cheaper

AEREEXMNEN: — M EREEREMEpicCRZE, B ARREFEEMERERTTHEHIFE
fa

4.Version of HTTP

e HTTP/1: introduced multiple, pipelined GETs over single TCP connection
server responds in-order (FCFS: first-come-first-served scheduling) to GET requests => "head-
of-line / HOL blocking" small objects by large objects

e HTTP/2: decreased delay in multi-object HTTP requests
allow clients to customize order of requested objects' transmission
divide objects into frames, schedule frames to mitigate HOL blocking
push unrequested objects to clients

server

GETO, GETO,

GETO, gGeTO, ﬂ object data requested

client

-

0, O, O, delivered quickly, O, slightly delayed

e HTTP/3: adds security, per object error- and congestion-control (more pipelining) over UDP

2.2.2 E-mail, SMTP, IMAP

1. SMTP: Three Major Components

af://n311
af://n321
af://n322

server

ooooo

mail
server

[outgoing
e message queue

O user mailbox

e user agents: aka., mail reader, e.g., outlook

e mail servers: mailbox (contains incoming messages for user) + message queue (to-be-sent
mail messages)

e SMTP / Simple Mail Transfer Protocol: introduce SMTP RFC(5321) here
uses TCP to reliably transfer email messages (mail server initiating connection) to server,
port 25

three phases of transfer:
SMTP handshaking (greeting) => SMTP transfer of messages => SMTP closure

“client” “server”
SMTP server SMTP server

initiate TCP :
connection —
RTT.
TCP connection | |
initiated \
20—
SMTP) ——
handshaking HELO —
*_,, 250 Hello
SMTP
transfers
_time v

220 here indicates the application-layer protocol used is FTP

2. SMTP: Typical Scenario

Bob invokes his UA
[| toread mess

user -
agent " ‘tlf

ez

Alice’s mail server Bob’s mail server
SMTP client SMTP server
3. SMTP: Characteristics
comparison with HTTP: = SMTP uses persistent

connections

= HTTP: client pull
= SMTP requires message

" SMTP: client push (header & body) to be in
= both have ASCIl command/response 7-bit ASCII
interaction, status codes = SMTP server uses
CRLF.CRLF to determine
= HTTP: each object encapsulated in its end of message

own response message

SMTP: multiple objects sent in
multipart message

HTTP encapsulates each different type of objects (HTML, JavaScript files, CSS files) in different resposne
messages, while SMTP uses MIME (Multipurpose Internet Mail Extensions) standard to send multiple
objects within a single message

HTTP - client pull: client requests data from server
SMTP - client push: client sends data to server

4. IMAP: mail access protocols

IMAP / Internet Mail Access Protocol: messages stored on server, IMAP provides retrieval,
deletion, folders of stored messages on server

HTTP: Gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top of STMP (to
send), IMAP (or POP) to retrieve e-mail messages

e-mail access
user SMTP user e
724% |agent SMTP protocol | agent |/ Cird
8 | (T . (e.g., IMAP, wa
w 4 R
%4 00000 H TTP) %
sender’ s e-mail receiver’ s e-mail
server server

2.2.3 DNS: Domain Name System

Definition:
distributed database implemented in hierarchy of many name servers
application-layer protocol: host and DNS servers communicate to resolve names
millions of different organizations responsible for their records

af://n333
af://n335
af://n339
af://n345

Functions:
hostname-to-IP-address translation

host / mail server aliasing BlI4& M, load distribution: many IP addresses correspond to one
name

Root DNS Servers Root
.com DNS servers .org DNS servers .edu DNS servers Top Level Domain
yahoo.com amazon.com pbs.org nyu.edu umass.edu horitati
DNS servers DNSservers ~ DNS servers DNS servers DNS servers Authoritative

e Root name servers: official, contact-of-last-resort by name servers that can not resolve
name

13 logical root name “servers”
worldwide each “server” replicated
many times (~200 servers in US)

7] 0 Servers
] 1-10 Servers
B 11-20 Servers
B 21+ Servers

e Top Level Domain and Authoritative Servers
TLD / Top-Level Domain servers: responsible for .com, .org, .net, .edu, .aero, .jobs,
.museums , and all top-level country domains, e.g., .cn, .uk, .fr, .ca, .jp.

Authoritative DNS servers: organization’s own DNS server(s), providing authoritative
hostname to IP mappings for organization’s named hosts; can be maintained by organization
or service provider

e Local DNS name servers: local cache of recent name-to-address translation pairs (or
forwarding request into DNS hierarchy for resolution)
each ISP has local DNS name server: ipconfig /all
cache entries timeout after some time (TTL) and could be out-of-date

1. iterated and recursive query

e |terated query

af://n357

root DNS server

g.nyu.edu
.umass.edu 5
/ TLD DNS server
— 4
P
g 5

requesting host at local DNS server
engineering.nyu.edu dns.nyu.edu .
gaia.cs.umass.edu

' 'Nf =

authoritative DNS server
dns.cs.umass.edu

e Recursive query

root DNS server
ng.nyu.edu

's.umass.edu 2 H Y
/ A
g 1 n TLD DNS server
8

requesting host at local DNS server

4
engineering.nyu.edu dns.nyu.edu 3 l l .
gaia.cs.umass.edu

=

authoritative DNS server
dns.cs.umass.edu

2. DNS records and protocols

DNS: distributed database storing resource records (RR)

RR format : (name, value, type, ttl)

® type
A: name =hostname, value =IP address

NS: name =domain (e.g., foo.com), value =hostname of authoritative name server for this
domain

CNAME: name =alias name for some “canonical” (the real) name, value =canonical name
MX: value =canonical name of SMTP mail server associated with alias hosthname name

e protocols
DNS query and reply messages have same format:

af://n365

message header:

ro
= identification: 16 bit # for quer ¥ questions

reply to query u e# # authority RRs
= flags:

guestions (variable # of guestions)

* query or reply

* recursion desired

* recursion available

* reply is authoritative

name, type fields for a query

RRs in response to query

records for authoritative servers

| a |H

additional “ helpful” info that may

be used

2.3 Other Applications

2.3.1 P2P Applications

NO always-on server
arbitrary end systems directly communicate

+—— 2bytes ——»+—— 2bytes —»

| identification

| —-flags

answer RRs

additional RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

-+ 2 bytes > 4 2 bytes ——»
identification flags
questions # answer RRs

authority RRs

additional RRs

L questions (variable # of questions)

- answers (variable # of RRs)

- authority (variable # of RRs)

— additional info (variable # of RRs)

Example: P2P file sharing (BitTorrent), streaming (KanKan), VolP (Skype)

af://n377
af://n378

e client-server file distribution time
Notation: N file copies, dyin = min client download rate
the time needs increase linearly in N

u.: server upload

capacity

d;: peer i download
capacity

d;
network (with abundant :2_
bandwidth) u,v\ '

u;: peer i upload

capacity
NF F
Dcfs > y 7
- maa;{ Usg dmin }
o P2P file distribution time
F NF
Fpop > maz{—, }

)
Usg dmin Ug + Zuz

client upload rate =u, F/u=1hour, u,=10u, d,. 2> u,
3.5
° -a- P2P o’
g 3 -e— Client-Server /
=
5 2.5 /
5
o 2
@ J/
o 1.5
: e
£ 1 /
= W
= 05 .ﬁ{‘g‘g,g—aa'"
0 I] I I I T 1
0 5 10 15 20 25 30 35

2.3.2 video streaming && content distribution networks

1. Multimedia: video
coding: use redundancy within and between images to decrease bits used to encode image
spatial (within image)
temporal (from one image to next)
measure: CBR (constant bit rate), VBR (variable bit rate)

2. Streaming stored video
Streaming video = encoding + DASH + playout buffering

streaming: at this time, client playing out early part of video, while server still sending later
part of video

© I
©
©
3]
=
&
3
g 2. video :
© sent
1. video 3. video received, played out at client
recorded 7 I_[(30 frames/sec)
(e.g., 30 YT time
= network delay
frames/sec) === (fixed in this
= example)

i streaming: at this time, client playing out :
- early part of video, while server still sending
later part of video

playout buffering: compensate for network-added delay, delay jitter

af://n391

constant bit
rate video
transmission

client video
reception

constant bit
rate video

playout at client
variable

—

network
delay

Cumulative data

client playout time
delay

DASH / Dynamix Adaptive Streaming over HTTP: clients determine things

3. Content distribution networks / CDNs

store/serve multiple copies of videos at multiple geographically distributed sites: enable
streaming content to numerous users simultaneously

* enter deep: push CDN servers deep into many access networks
* close to users

* Akamai: 240,000 servers deployed P_\
in > 120 countries (2015)

* bring home: smaller number (10’s) of

larger clusters in POPs near access nets L . .
* used by Limelight —] lee“gm-rtwom

2.4 Socket programming
1. Python UDP

e UDP client

Python UDPClient

include Python's socket library — from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socket for server — clientSocket = socket(AF _INET,
SOCK_DGRAM)
get user keyboard input — message = raw_input('Input lowercase sentence:’)
attach server name, port to message; send into socket —» clientSocket.sendto(message.encode(),
(serverName, serverPort))
read reply characters from socket into string —» modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)
print out received string and close socket — print modifiedMessage.decode()
clientSocket.close()

e UDP server

af://n408
af://n409

Python UDPServer

from socket import *
serverPort = 12000
create UDP socket —» serverSocket = socket(AF_INET, SOCK_DGRAM)
bind socket to local port number 12000 — serverSocket.bind((", serverPort))
print (“The server is ready to receive”)
loop forever —» while True:

Read from UDP socket into message, getting —* message, clientAddress = serverSocket.recvirom(2048)
client's address (client IP and port) modifiedMessage = message.decode().upper()

send upper case string back to this cient — serverSocket.sendto(modifiedMessage encode(),
clientAddress)

2. Python TCP

e TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

create TCP socket for server, —— clientSocket = socket(AF_IN E
remote port 12000 clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())

No need to attach server name, port —— ModifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

e TCP server

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

create TCP socket for server, clientSocket = socket(AF_IN E
remote port 12000 clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())

No need to attach server name, port —— ModifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Chapter 3: Transport Layer

Key Functions: #ENetwork LayertgtaJIP to IPFIhost to hostRIMIZEEREEEARApplication Layerfd
process to process|BJAYEEpipe, so transport layer is about communication between processes
while network layer is about communication between hosts

Key_ Components: sender IP, sender Port, destination IP, destination Port

Principal Protocols: TCP / Transmission Control Protocol, UDP / User Datagram Protocol

af://n417
af://n427

3.1 Basic Functions and UDP

3.1.1 Multiplexing and Demultiplexing

Multiplexing: (sender) handle data from multiple sockets, add transport header (later used
for demultiplexing)

Demultiplexing: (receiver) use header info to deliver received segments to correct socket
(BMRERIRpacket 4R EAYprocesses, transport layer's duty)

32 bits
dest port #

source port

other header fields

application
data
(payload)

TCP/UDP segment format
TCP/UDPEIER iR — “Fsﬁ:‘

data |inkEMFEI—E0
e |P =>Processes / Ports => Sockets
one process can be demultiplexed to different sockets (ports)

w— f APACHE

HTTP SERVER

application - - - application
Ny Ripws
| o -

tranpport

rietwiork nspo

netyvork lifk network
|II'I|(E bhydical link
g phypical server: IP physical Q

address B

host: IP source IP,port: B,80
address A dest IP,port: A,9157

host: IP
(]

source JP-port—e,5775 address C
dest I port B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

— N R —NHTEET. IRSBESHFZUST 80 im (default HTTP server port) EEI3Zi%EEAY
EK, BIOERERTHE—Nsocket, SREDE—worker processEi@idsocketiIZFIHRE, X
EEAPACHE serverfJ P4, P5, P6HifNFE3 N worker process, ZFimlaiRSSimAIEpacket YRS
f&dest port&BE 80 , ARSZumAYtansport layerf&th{iJdemultiplexed?8 AR EAYsockets (HFE) .

TR, XEBER 80 BEEEROS, REFELRTHIMEER, RERTIRS .
e TCP vs UDP in demultiplexing

TCP: using 4-tuple: source and destination IP addresses + port numbers
UDP: using destination port number (only)

af://n432
af://n433

3.1.2 UDP: connectionless transport

Connectionless: no handshaking between UDP sender and receiver; each UDP segment
handled independently of others

Strength of UDP:
no connection establishment => decrease an RTT delay

simple: no connection state at sender and receiver

small header size

no congestion control => fast!

can add needed congestion control and reliability at application layer (HTTP/3)

Application: streaming multimedia apps, DNS, SNMP (Simple Network Management
Protocol), HTTP/3

1. Procedure

e UDP sender actions
is passed an application
determines UDP segment header fields values
creates UDP segment
passes segment to IP

. SNMP server
UDP sender actions:
= js passed an application-

layer message
= determines UDP segment {ue, [SNMP msg |
header fields values

= creates UDP segment
® passes segment to |P
_ __— H
e UDP receriver actions

receives segment from IP
checks UDP checksum header value
extracts application-layer message
demultiplexes message up to application via socket

. SNMP server
SNMP client ;b receiver actions:
= receives segment from IP
= checks UDP checksum
‘;m header value
= extracts application-layer
message

= demultiplexes message up
to application via socket

S T —

2. UDP segement header

af://n444
af://n449
af://n457

32 bits

application
data

(payload)

UDP segment format

e UDP checksum
Goal: detect errors (i.e., flipped bits) in transmitted segment

Nength, in bytes of
UDP segment,

including header

\data to/from

application layer

Formula: addition (one's complement sum) of segment content (including UDP header fields

and IP addresses, as sequence of 16-bit integers)

example: add two 16-bit integers

11100110011001
11010101010101

wraparound (1)1 0 1 1 1 011101110
sum 10111011101111

checksum 010001000

[y
o
o
o

Note: when adding numbers, a carryout from the most significant bit needs to be

added to the result

one's complement sum: invert all the bits

3.2 Advanced Functions and TCP

3.2.1 Reliable Data Transfer

1. interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

sending
process
data

rdt_send() data

data

sender-side
implementation of
rdt reliable data
transfer protocol

udt_send () 4
/ e Unreliable D) «—
udt_send(): called by rdt

to transfer packet over Lo N
) P . Bi-directional communication over
unreliable channel to receiver unreliable channel

packet \ rdt

receiving Bl
process

receiver-side
implementation of
reliable data
transfer protocol

4 xdt_rcv()

deliver_data(): called by rdt
to deliver data to upper layer

deliver_data()

AN

rdt_rcv(): called when packet
arrives on receiver side of
channel

af://n465
af://n466
af://n467

2. develop rdt protocol

o rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable: no bit errors + no loss of packets

e rdt2.0: channel with bit errors

rdt_send(data)
packet = make_pkt(data)

udt_send(packet)

use checksum to detect bit errors

o stop-and-wait FSM / Finite State Machine

rdt_rcv(packet)
receiver

deliver_data(data)

acknowledgements (ACKs) : receiver explicitly tells sender that pkt received OK
negative acknowledgements (NAKs) :receiver explicitly tells sender that pkt had

errors

——sender retransmits pkt on receipt of NAK
o rdt2.1: add sequence number to each pkt: two seq. #s (0, 1) would suffice

o rdt2.2 (NAK-free): same functionality as rdt2.1, using ACKs only
e rdt3.0: channel with errors and loss

Approach: sender waits reasonable amount of time for ACK

sender receiver
send pkt0 Kt
\k‘ rov pktO
acl send ack0
rcv ackQ .)0/
send pktl \”\.
rov pktl
ack send ackl
rev ackl
send pkt) 80
rcv pktQ
ackl send ack0
(a) no loss
sender receiver
send pkt0 Kt
K rov pki
ack send ack0
rcv ack0 ‘/Cl/
send pktl \W\‘
rcv pktl
ol send ackl
loss
@ timeout.
resend pktl \ﬂ‘l\‘ rev pktl
(detect duplicate)
ack
rcv ackl send acﬂ
send pkt0 \M\‘
cv pkt0
ackl send ack0

(c) ACK loss

sender receiver

send pkt0
\ rcv gkmk[]
send ac
rcv ack0 .)D/

send pktl

. timeout.

resend pktl kt1

1‘055

rcv pktl
ack send ackl

\i/

rcv ackl

send pkt0
p > o %o
send acl

(b) packet loss

sender receiver
send pkt0 —__ pKt0
— v pkto
o — € send ack0
mé ailt(() — 2C
sen 1~
p pkt1 ~ rov pktl
_~ send ackl
- acki

timeout.
resend pktl
Pkt1 —__ rov pktl
(detect duplicate
pkt0 send ackl

ack1 rcv pkt0
acko =~ send ack0

rcv ackl
send pktO

rev ackl <
(ignore)

pkt1

/

(d) premature timeout/ delayed ACK

U'sender: utilization - fraction of time sender busy sending

U

sender

L/R

RTT+L/R

.008

30.008

= 0.00027

——pipelining: increase utilization

sender

receiver

extract (packet,data)

af://n469

sender receiver

first packet bit transmitted, t = 0 <o
last bit transmitted, t=L /R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

3L/R .0024

sender” RrrLL /R | dooos O-00087

o Go-Back-N: TCP sliding window, B8 EEAINMENERIR(E, alternative: ARMD
sender: "window" of up to NV
cumulative ACK - ACK(n): ACKs all pkt up to, including seq # n

* k-bit seq # in pkt header

send_base nextsegnum already usable, not
l ack’'ed yet sent

T T e R

£ __ window size
N

receiver: always send ACK for correctly-received pkt so far, with highest in-order seq #

Receiver view of sequence number space: ‘
received and ACKed

I II II g I II I] [I[I I] I] I Out-of-order: received but not ACKed

- I] Not received

in action:
sender window (N=4) sender receiver
012 3 TR send pkt0
0123 BLRE send pktl \)
L5678 send pkt2- receive pkt0, send ack0
0123 FLRAS send gktS T —X/oss receive pktl, send ackl
(wait) receive pkt3, discard,
rcv ack, send pkt4 (re)send ackl
rcv ackl, send pkt5 receive pkt4, discard,
)) (re)send acki
_ignore duplicate ACK receive pkt5, discard,
pkf2ﬁmeout_ (re)send ackl
send pkt2
send pkt3
send pkt4 rcv pkt2, deliver, send ack2

rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

send pkt5

LRI2 345 S

Vi

o Selective Repeat: HAR{EHA1EIR FEREERLLGo-Back-NFFiEEYF, IR E—1ack
sender and receiver:

send_base nexfsegnum

dlready usable, not
¥ i ack’'ed yet sent
sent, not
N TH IIIIIII]I]HH[IHH | coptngtyy [neruscne
t__ window size—4
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but Aririatie
diready ack’ed (within window)
yet received
t _ \indow size—2%
N
rev_base

(b) receiver view of sequence numbers

in action:
sender window (N=4) sender receiver
5678 send pkt0
REE): 5678 send pktl \ Ve okt 4 acko
REEY 567 8 send pkt2- receive pkty, send ac
012 3 TN send pkt3 \\‘Xloss receive pkt1, send ackl
(wait)

receive pkt3, buffer,
ofE¥Y¥Es78 rcv ack0, send pkt4 send ack3
8 rcv ackl, send pkt5

receive pkt4, buffer,

record ack3 arrived send ack4
-y receive pkt5, buffer,
pkt 2 timeout | send ack5

send pkt2
(but not 3,4,5) \
rcv pkt2; deliver pkt2,
/pkt3, pkt4, pkt5; send ack2

Q- what happens when ack2 arrives?

problem: relationship between sequence # size and window size
Example: seq #s: 0, 1, 2, 3 (base 4 counting) —— identical cases from receiver's
perspective

sender window receiver window

(after receipt) (after receipt)
ktO
kil ofEElo 12
kt2 o 1EE[1 2
o 1 2ETEl2
. I
_W-——* will accept packet
() bI with segq number &
d) NO problem
EE: 0 1 2 —Lkt0
ms 012 —pktl i]1 2 3 R
kt2 o 1EEQ1 2
o1 2ENiEl2
timeout
rel’.ransm|t kt0
P okto
will accept packet

with seq number 0

(b) oops!

3.2.2 TCP: connection-oriented

TCP segement structure

32 bits ——

source port # dest port #
ACK: seq # of next expected ©EEYIFERTERGuence number

byte; A bit: this is an ACK

notused: 4bit _t——acknowledgement number
—bitFRI20it

segment seq #: counting

bytes of data into bytestream
(not segments!)

length (of TCP header) eadlooticle| Jale[rlsle| receive window flow control: # bytes
Internet checksum ————=checksdm receiver willing to accept
C, E: congestion notification " tions (variable length)
TCP options /
_ _ application data sent by
RST, SYN, FIN: connection data application into
management

(variable length) TCP socket

1. TCP reliable data transfer

e sequence numbers and ACKs
sequence numbers: byte stream “number” of first byte in segment's data
acknowledgements: seq # of next byte expected from other side; cumulative ACK

af://n507
af://n508
af://n510

outgoing segment from sender
desl port #

acknowledgement number
[[rwnd
chacksum urg paintar
wmdnw s

sequem‘e num r saac‘e

sent sent, not- usahle nnt
ACKed yet ACKed butnot usable
(“in-flighty yet sent

butgoing segment from receiver

source port # | dast port #
sequence number

acknowledgement number
A rwnd

checksum urg pointer

o simple telnet scenario:

Host A g, Y Host B

User types ‘C’
CK-}'B ata= c)
host ACKs receipt

of ‘C’, echoes back ‘C’
Seq CK data= ‘C’
host ACKs receipt
of echoed ‘C’
Seq-43 AC

e RTT and timeout
at least, timeout should be longer than RTT, but shouldn't be too long (slow reaction)

o EstimatedRTT
SampleRT'T' average several recent RTTs measurements
EstimatedRTT = (1 — o) x EstimatedRTT 1 + axSampleRTT
(typically o = 0.125)

EWMA / Exponential Weighted Moving Average: influence of past sample decreases
exponentially fast

350

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

L)
w 300
©
c
; i
Q
Q
B!
15
~—r
o
& sampleRTT
150
EstimatedRTT
100 T T T T
1 8 15 22 29 36 43 50 57 64 7 78 85 92 99 106

time (seconds)

o Timeoutlnterval

TimeoutInterval = EstimatedRTT + 4x DevRTT (safety margin)
,where DevRTT = (1 — f)xDevRTT + Bx|SampleRTT — Estimated RTT|
(typically B = 0.25)

e in action
Host A Host B Host A Host B

~— SendBase=92 ~—
Seq=92, 8 bytes of data Seq=92, 8 bytes of data
~

— 5
ACK=100 2
a

E Seq=100, 20 bytes of da
= X
ACK=100
ACK=120

Seq=92, 8 bytes of data

SendBase=100 bytes o send cumulative
— SendBase=120 ACK for 120
ACK=100
/ A 0
SendBase=120
lost ACK scenario premature timeout

Host A Host B

2 =

?92 8 bytes of data
q=92, of da
~Sea-
Seq=100, 20 bytes of d.
ACK=100
g

ACK=120

\

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

TCP fast retransmit:

If sender receives 3 additional ACKs for same data (“triple duplicate ACKs"), resend unACKed
segment with smallest seq #

—— likely that unACKed segment lost, so don't wait for timeout

— TCP fast retransmit

if sender receives 3 additional
ACKs for same dat3 (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #

= |ikely that unACKed segment lost,
so don’t wait for timeout

‘(JReceipt of three duplicate ACKs

indicates 3 segments received "354=100, 20 bytes of data
after a missing segment — lost

segment is likely. So retransmit!

2. TCP flow control

Problem: What happens if network layer delivers data faster than application layer
removes data from socket buffers?

application

Application removing)
data from TCP socket

buffers
TCP socket

receiver buffers

Network layer
delivering IP datagram __|
payload into TCP
socket buffers

FEES MCEMEL |

from sender

receiver protocol stack

Flow Control: receiver controls sender, so sender won't overflow receiver's buffer by
transmitting too much, too fast

e rwnd field
TCP receiver "advertises" free buffer space in rwnd field in TCP header "receive window
RcvBuffer size set via socket options (typical default is 4096 bytes)
sender limites amount of unACKed ("in-flight") data to received rwnd

af://n537

to application process

RevBuffer buffered data

T

rwnd

free buffer space

TCP segment payloads

TCP receiver-side buffering

3. TCP 3-way handshake

problem with 2-way handshake:

2 B

choose x '~
reg_conn(x
ESTAB

retransmit | 5. conn(x)
reg_conn(x) -

ESTAB
req_conn(x)

. _ Connection _ | _ _ _
_client x completes ~ [server
terminates forgets x

» ESTAB

Problem: half open acc_conn(x)
connection! (no client) «—

2 B

hi
choose x ~eq_conn(x
» ESTAB
retransmit acc_conn(x)
reg_conn(x) -
ESTAB
a (X"‘lL" accept
. data(x+1)
retransmi
data(x+1) rhection
client- " capletes ™ sarver
terminates forgets x
req_conn(x)
\ N ESTAB
data(x+1) _ accept
data(x+1)

m Problem: dup data
accepted!

e TCP connection management: initialize a request
client: send a connection request via SYNbit=1, Seq=x
server: ACK client's request via SYNbit=1, ACKnum=x+1, ACKbit=1, Seq=y
client: ACK server's ACK and may contain data via ACKnum=y+1, ACKbit=1

af://n546

Client state

Server state

serverSocket = socket (AF_INET, SOCK_STREAM)
saerverSocket .bind(("', serverPort))
serverSocket.listen (1)

connectionSocket, addr = serverSocket.accept()

clientSocket = socket (AF_INET, SOCK_STREAM)

clientSocket.connect ((serverName, serverPort)) g H

choose init seq num, x
send TCP SYN msg
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK
msg, acking SYN
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |

this segment may contain

client-to-server data ACKbit=1, ACKnum=y-+1

.. received ACK(y)

e TCP connection management: close a connection
Side A: send TCP segment with FINbit=1
Side B: ACK A's request via FINbit=1, ACKnum=x+1, ACKbit=1

Side A: ACK B's ACK via ACKnum=y+1, ACKbit=1

4. TCP congestion control

Different from flow control:

flow control is about one sender sending too fast to one receiver

congestion control is about too many senders sending too fast
Scenario 1: infinit router buffers

i i original data: 7\'in
Simplest scenario: =
e e Host A
= one router, infinite buffers
= input, output link capacity: R
= two flows
= no retransmissions needed

infinite shared
output link buffers

v
SYN RCVD

indicates client is live

LISTEN

ESTAB

throughput: }uout

B

r
[N

Q: What happens as
arrival rate 7,
approaches R/2?

throughput‘.lou‘
delay

maximum per-connection
throughput: R/2

mmi=: gueusing

Scenario 2: finite router buffers

= sender retransmits lost, timed-out packet

g R2 A
large delays as arrival rate
A approaches capacity

* application-layer input = application-layer output: A, = A
« transport-layer input includes retransmissions : }'j,= A,

Host A @ «1— A, : original data
Pt b
A, original data, plus
retransmitted data
L,
; . R R
Host B finite shared output
link buffers

e |ost packets => retransmission

| lnut

af://n557

=
P
|

“wasted” capacity due
to retransmissions

when sending at
R/2, some packets
are needed
retransmissions

throughput: ?"out

[A —

2

:i Ain

e suggested lost packets => un-needed duplicates

»
P
|

7 | *wasted” capacity due
| to un-needed
""""""""""" retransmissions
when sending at
R/2, some packets
are retransmissions,
including needed
and un-needed
duplicates, that are
delivered!

throughput: ?"out

N -

R/

Scenario 3: four senders, multi-hop paths, timeout/retransmit
when packet dropped, any upstream transmission capacity and buffering used for that
packet was wasted

R/2

?“out

, [
7\'in R/2

e congestion problems
throughput can never exceed capacity
delay increases as capacity approached
loss/retransmission decreases effective throughput
un-needed duplicates further decreases effective throughput
upstream transmission capacity / buffering wasted for packets lost downstream

Approach 1: End-End congestion control

no explicit feedback from network

congestion inferred from observed loss, delay
approach taken by TCP

ACKSs] ACKs

Approach 2: Network-assisted congestion control

routers provide direct feedback to sending/receiving hosts with flows passing through
congested router

may indicate congestion level or explicitly set sending rate

TCP ECN, ATM, DECbit protocols

= explicit congestion info -

2

ACKs

ACKs

—_

. TCP congestion control: AIMD
AIMD: Additive Increase Multiplicative Decrease
Approach: senders can increase sending rate until packet loss (congestion) occurs, then
decrease sending rate on loss event

Additive Increase ———— Multiplicative Decrease
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event

RTT until loss detected

AIMD sawtooth
N Rt behavior: probing
fr=, EEREERE

for bandwidth

TCP sender Sending rate

Transport Layer

time
Cut in half on loss detected by triple duplicate ACK (TCP Reno) (FrfY)
Cut to 1 MSS (maximum segment size) when loss detected by timeout (TCP Tahoe) (ZEZfY)

o cwnd: congestion window (number of bytes that a sender is allowed to transmit before
it must receive an ACK from the receiver)

sender sequence number space

TCP sending behavior:

| | * roughly: send cwnd bytes,
‘IIIIIIIII IIIIII wait RTT for ACKS, then
send more bytes

last byte L) cwnd

ACKed sent, but not- avallabls but TCP rate = bytes/sec
yet ACKed not use RTT
(“in-flight™) last byte sent

= TCP sender limits transmission:| LastBytesent- LastByteAcked < cwnd |

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

o TCP Reno: quick start and fast recovery
TCP Tahoe (original version): slow start but rate ramps up exponentially fast

Q: when should the exponential
increase switch to linear? e
TCP Reno
A:when cwnd gets to 1/2 of its | . 27
value before timeout. €2 e
c E
.% g 6
Implementation: 57 4
2
* variable ssthresh . ~
0 ‘II ‘2 lj' £|1 5‘ é Ilf é é'IIDIIIII21|3‘I|41‘5

= on loss event, ssthresh is set to
1/2 of ewnd just before loss event

Transmission round

2. TCP congestion control: CUBIC
increase W as a function of the cube of the distance between current time and K (pointin
time when TCP window size will reach W,,,,)

* larger increases when further away from K
* smaller increases (cautious) when nearer K

= TCP CUBIC default y
in Linux, most VT o
popular TCP for F | e cEr::c
popular Web sendiTnch ||' !
servers rate ||

tﬂ tl tl T‘S t-l
CUBIC: TCP (classic, CUBIC) increase TCP's sending rate until packet loss occurs at some
router’s output: the bottleneck link

3. TCP congestion control: delay-based

bytes sent in last RTT interval
RTTmeasured

cwnd
RTT,in

measured througput =

uncongested throughput =

Delay-based approach:
= RTT,,, - minimum observed RTT (uncongested path)
= uncongested throughput with congestion window cwnd is cwnd/RTT,,,

if measured throughput “very close” to uncongested throughput

increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

4. TCP congestion control: ECN
ECN: Explicit Congestion Notification
1 two bits in IP header (ToS field) marked by network router to indicate congestion, and this
congestion indication carried to destination
2 destination sets ECN bit on ACK segment to notify sender of congestion, involving both IP
(IP header ECN bit marking) and TCP (TCP header ¢, E bit marking)

source TCP ACK segment destination

TCP =

IP datagram

5. Discussion: is TCP fair?

TCP fairness: if K TCP sessions share same bottleneck link of bandwidth R, each should
have average rate of %

Answer: YES, under assumptions that @ same RTT and @ fixed number of sessions only in
congestion avoidance (or new TCP sessions would crowd out available bandwidth thus
owning a larger share)

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Other solution: multiple parallel TCP connections between hosts

TCP favors short slow (shorter RTT)
3.2.3 Evolution: QUIC

HTTP/3: moving transport-layer functions to application layer, on top of UDP

af://n612
af://n617

Chapter 4: Network Layer: Data Plane

4.1 Overview

e Two key network-layer functions: forwarding and routing
e Data Plane and Control Plane

o Data Plane: local, per-router function, determining how datagram arriving on router
input port is forwarded to router output port

o Control Plane: network-wide logic, determining how datagram is routed among routers
along end-end path from source host to destination host
traditional routing algorithms: implemented in routers
software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every
router interact in the control plane

control
plane

Local farwarding data
table |
header output plane

values in arriving
packet heade

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

Remote Controller

control
plane

values in arriving
packet header

Metwork Lz

The Controller Agent (CA) acts as an intermediary between the controller and the
network devices. It is responsible for translating the policies and commands
defined by the controller into configurations that can be executed by the network
devices.

e Network Service Model
example services for individual datagrams: rdt, delivery within 40 msec delay
example services for a flow of datagrams: in-order, minimum bandwidth guarantted,
restictions on changes in inter-packet spacing

af://n617
af://n618

Internet "best effort" service model: most fundamental service model (no loss, order, timing
guarantees)

other service model:

Quality of Service (QoS) Guarantees ?

Network Service

Architecture Model Bandwidth Loss Order Timing

Internet best effort none no no no
ATM Constant Bit Rate Constant rate yes yes yes
ATM Available Bit Rate Guaranteed min no yes no

Internet Intserv Guaranteed yes yes yes yes

(RFC 1633)
Internet Diffserv (RFC 2475) possible possibly possibly no
4.2 Router

input ports, switching, output ports
buffer management, scheduling

4.2.1 Router architecture overview

high-level view of generic router architecture:

routing, management

routing control plane (software)
[processor operates in millisecond
__ time frame
—— forwarding data plane
II II I[1] > [r] (hardware) operates
LIt L] in nanosecond
° ° timeframe
® high-speed ®
° switching ®
° fabric ®
— 1] [11—
—_1L_| L1 1—
router input ports router output ports

4.2.2 Router architecture specifics

1. input port

af://n639
af://n642
af://n645
af://n646

link folrc\).gak::fi)r'lg
N line || layer 1, switch
termination protocol I"II"" fabric
(receive)
queueing
/

physical layer: ”
bit-level reception
decentralized switching:

link layer:
e.g., Ethernet = using header field values, lookup output port using
(éhapter 6) forwarding table in input port memory (“match plus action”)

goal: complete input port processing at ‘line speed’

* input port queuing: if datagrams arrive faster than forwarding
rate into switch fabric

¢ destination-based forwarding: forward based on destination IP address (traditional)

forwarding table
Destination Address Range Link Interface

11001000 00010111 00010000 00000000
through 0
11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through 1
11001000 00010111 00011000 11111111

11001000 00010111 00011001 0OOOOOOO
through 2
11001000 00010111 00011111 11111111

otherwise 3

Longest prefix match: when looking for forwarding table entry for given destination address,
use longest address prefix that matches destination address.

TCAM / Ternary Content Addressable Memories: a type of high-speed memory used for
performing the longest prefix matching algorithm. TCAMs allow the router to compare the
incoming packet's destination address to multiple routing table entries simultaneously,
enabling very fast routing table lookups.

o content addressable: present address to TCAM and retrieve address in one clock cycle,
regardless of table size
o Cisco Catalyst (a brand of network swtiches): about 1M routing table entries in TCAM
e generalized forwarding: forward based on any set of header field values

2. switching fabrics

e switching rate: rate at which packets can be transfer from inputs to outputs

 often measured as multiple of input/output line rate
* N inputs: switching rate N times line rate desirable

ideally)

; . high-speed .
N input ports : switching . N output ports

fabric

R e

af://n661

e 3 types of switching fabrics: memory, bus, interconnection network

o=t '@mﬁ
=== i ===
=== =E=t === SIS === !
memory bus interconnection Fﬂ Eﬂ
network [l I

o switching via memory
first generation routers:
switching under direct control of CPU
packet copied to system's memory
speed limited by memory bandwidth (2 bus crossings per datagram)

L] input output - -
(! g port memo port m_
‘w (e'g" Y (e'g'! ‘i. 1
| Ethernet) Ethernet) |
system bus
o switching via a bus
bus contention: switching speed limited by bus bandwidth
—
= 1 —=
— | r—
] 11— *
— 1 11—
— - L JL_I—

o switching via interconnection network
multistage switch: nxn switch from 3x3 crossbar multiple stages of smaller switches
exploiting parallelism: fragment datagram into fixed length cells on entry; switch cells
through the fabric, reassemble datagram at exit

N

AN

8x8 multistage switch
built from smaller-sized switches

Cisco CRS router: basic unit (8 switching planes), each plane (3-stage interconnection
network), up to 100's Tbps switching capacity

3. queuing

e input port queuing

if switch fabric slower than input ports combined => queueing may occur at input queues,
queuing delay and loss due to input buffer overflow

Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in

queue from moving forward
T e s
==pTHR O
~
A= “\ | #
4 ~
e T H e,
fabrics
_|- ml----’ | L,

fabri¢
.- - -
one packet time later: green
packet experiences HOL blocking

—

output port contention: only one red
datagram can be transferred. lower red
packet is blocked

output port queuing

Buffering required when datagrams arrive from fabric faster than link transmission rate.
Drop policy may applies due to congestion, lack of buffers.

Scheduling discipline chooses among queued datagrams for transmission. One possible
execution may be priority scheduling.

) datagram
switch buffer link i
i layer ine .
faﬁgc 'I““II" ~| protocol 1 termination R g
(rate: NR) queueing (send)
W ey L, - - |
I (|t id il \\ .
’ VLA
/ N
Ai- T Taien B P — [swich {—EE—
. fabric Y
fabric / AR
.- m----7 Y 1,

at t, packets more one packet time later

from input to output

af://n681

e buffering size
RFC 3439 rule of thumb: avergae buffering equal to typical RTT (say 250 msec) times link
capacity C (e.g., C =10 Gbps link: 2.5 Gbit buffer)
more recent recommendation: with N flows, bu f fering = L\/:]%C

e buffer management
drop: decide which packet to add, drop when buffers are full (e.g., tail drop, priority)
marking: which packets to mark to signal congestion (ECN, RED)

4. packet scheduling

packet scheduling: decide which packet to send next on link

Abstraction: queue

packet U departures

arrivals queue link
(waiting area) (server)

e FCFS/ First come, first served (also known as FIFO / First-in-first-out): packets transmitted in
order of arrival to output port

e priority
1 arriving traffic classified, queued by class (any header fields can be used for classification)
2 send packet from highest priority queue that has buffered packets (FCFS within priority
class)

high priority queue

arrivals
— —
—
—
classify link departures

low priority queue

e RR/round robin: arriving traffic classified, queued by class, server cyclically, repeatedly
scans class queues, sending one complete packet from each class (if available) in turn

—i —_—

I » R —

—- —_—
classify N link departures
arrivals

af://n695

e WFQ / Weighted Fair Queuing: generalized round robin; each class, i, has weight wj, and gets
weighted amount of service in each cycle: Zw—w minimum bandwidth guaranteed (per-
j Wi

traffic-class)

— —
— —
— —

classify link departures

arrivals

4.3 IP: Internet Protocol

Network Layer Overview

host, router network layer functions:

transport layer: TCP, UDP

IP protocol
Path-selection P
laorith * datagram format
aigorithms: * addressing
network implemented in torwardin « packet handling conventions
|a er = routing protocols orwarding
Y (OSPF, BGP) _ table ICMP protocol
* SDN controller — e error reporting
e router “signaling”
link layer

physical layer

OSPF / Open Shortest Path First: FFHEREIERME
BGP / Border Gateway Protocol: FRRZHMY

4.3.1 IPv4 Datagram format

af://n712
af://n713
af://n718

— 32bits —

IP protocol version number —=""Th 24 Ttype of total datagram ~ ¢
ver L
header length(bytes) service length ——— length (bytes)
“type” of service:— | 16-bit identifier {figs] % — fragmentation/
= diffserv (0:5) - - offset reassembly
= ECN (6:7) time to | upper header
(67) live V" layer checksum |~ header checksum

TTL: remaining max hops/

— 32-bit source IP adfiress
(decremented at each router)

source IP address

upper layer protocol (e.q., TCP or UDP)/ destination IP address — 32-bit destination Ij address
options (if any) — e.g., timestamp, regord
overhead route taken

= 20 bytes of TCP

payload data
= 20 bytes of IP

(variable | th Maximum length: 64K bytes
varianle lengtn,

Typically: 1500 bytes or less

= =40 bytes + app typically a TCP
layer overhead for or UDP segment)
TCP+IP

A 4
=Wetwork Layer: 4-43

4.3.2 IP addressing

1. Terms

interface / #[1: connection between host / router and physical link
routers typically have multiple interfaces
host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
I[P address: 32-bit identifier associated with each host or router interface
subnet: device interfaces that can physically reach each other without passing through an
intervening router
subnet part: devices in same subnet have common high order bits
host part: remaining low order bits

subnet 223.1.1.0/24
3.1.1.1 subnet 223.1.2.0/24

2

N

Jff\z
'

22311

223.1.1.2

lrh
{

223114 223.1.2.9

A: wired Ethernet f,,,; =<

interfaces connected -& \
by Ethernet switches 223113 S S E«s—}ﬁ’
| ! subnet
A: wireless WiFi T | 223.1.3.0/24
interfaces connected 7223'1'3'1 Dm”"z
by WiFi base station &= =

dotted-decimal IP address notation:
223.1.1.1 = 11011111 00000001 00000001 00000001
L

223 1 1 1
subnet mask: /24

(high-order 24 bits: subnet part of IP address)

af://n721
af://n722

223.1.91 223.1.7.1
223.1.8.1 223.1.8.0

223.1]2.6 Subnet 223.1.8/24 223.1i3.27 .

subnets can exist without hosts and only have routers connected to it, used for routing and
interconnecting different parts of the network.

CIDR / Classless InterDomain Routing:
subnet portion of address of arbitray length
address format: a.b.c.d/x, where x is # bits in subnet portion of address

subnet host
part part

11001000 00010111 00010000 00000000
200.23.16.0/23

—

2. IP allocation: DHCP + ICANN

Two questions:
How does a host get IP address within its network?
How does a network get IP address for itself?

e DHCP / Dynamic Host Configuration Protocol: dynamically get address from a server
hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
goal: host dynamically obtain IP address from network server when it joins network
workflow: (DHCP server generally locates in router)

= host broadcasts DHCP discover msg [optional]

= DHCP server responds with DHCP offer msg [optional]
= host requests IP address: DHCP request msg

= DHCP server sends address: DHCP ack msg

DHCP server: 223.1.2.5 DHCP discover Arriving client

E Broadcast: is there a I
DHCP server out there? | <o
/;P offer

Broadcast: I'm a DHCP
T —————— | server! Here'san IP
address you can use L,| The two steps above can

DHCP request be skipped “if a client
remembers and wishes to

Broadcast: OK. Twould | | reuseapreviously

like to use this IP address! allocated network address”
’ [RFC 2131]

DHCP ACK

_‘__——‘—‘—_-—'_—\—

Broadcast: OK. You've
got that IP address! [~

v

other functions:
address of first-hop router for client
name and IP address of DNS server
network mask (indicating network versus host portion of address)

af://n729

DHCP
UDP
IP
Clotce Eth
Phy
[EIDHCE) —~— =~
168.1.1.1
router with DHCP
server built into

router

When a device wants to send a packet to another device on the same local area
network (LAN), it needs to first determine the MAC address of the destination device.
To do this, it sends out an Ethernet frame with a broadcast destination MAC address of
FF-FF-FF-FF-FF-FF .

When an Ethernet frame with a broadcast destination MAC address is sent on a LAN, all
devices on that LAN receive the frame. However, only the device with the matching
MAC address in the frame's destination field will process the frame and respond.

The DHCP server's response will be unicast, meaning it will be sent directly to the MAC
address of the requesting client, rather than being broadcast to all devices on the
network. This unicast response will have the MAC address of the DHCP server as the
source address and the MAC address of the requesting client as the destination
address.

DCP server formulates DHCP ACK containing client’s IP address, IP address of first-hop
router for client, name & IP address of DNS server

e |SP's address space
network get subnet part of IP address from its provider ISP's address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Organization0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization2 11001000 00010111 00010100 00000000 200.23.20.0/23

Organization7 11001000 00010111 00011110 00000000 200.23.30.0/23

Hierarchical addressing: more specific routes

* Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
= |SPs-R-Us now advertises a more specific route to Organization 1

Organization 0

200.23.16.0/23
\ “Send me anything
with addresses

Organization 2 beginning

200.23.20.0/23 - Fly-By-Night-ISP %

Organization7 |

Internet

200.23.30.0/23
Send me anything
_— with addresses
Organization 1 / l:ggn ;r‘;lf;}gﬂ 6"
200.23.18.0/23 “or 200.23.18.0/23”

hierarchical addressing: route aggregation

e |CANN / Internet Corporation for Assigned Names and Numbers: from whom ISP get block
of addresses

allocates IP addresses through 5 regional registries (RRs), which are responsible for
administering and distributing IP address blocks to ISPs and other organizations within their
respective regions

manages DNS root zone, including delegation of individual TLD (.com, .edu, ...) management

For example, ICANN has delegated the management of the .com TLD to Verisign, who is
responsible for maintaining the registry of all .com domain names and the associated
IP addresses. Similarly, the management of the .edu TLD is delegated to Educause, a
nonprofit association of universities and colleges in the United States.

4.3.3 NAT / network address translation

rest of . local network (e.g., home .
Internet network) 10.0.0/24

np
138.76.29.7 10.0.0.4 o

— noos
m.o.o_.a_g,
all datagrams leaving local network have datagrams with source or destination in

same source NAT IP address: 138.76.29.7, this network have 10.0.0/24 address for
but different source port numbers source, destination (as usual)

all devices in local network have 32-bit addresses in a “private” IP address space (10/8,
172.16/12, 192.168/16 prefixes) that can only be used in local network

e the whole process

NAT translation table

2: NAT router changes WAN side addr __ [LAN side addr fatagram to
datagram source address 138.76.29.7 5001 |10.0.0 1 3345 o8 g S AOL86. 80
from 10.0.0.1, 3345 to 0234 0.0.1, 128.119.40.186,

138.76.29.7, 5001, —
updates table

10.0.0._12.
10.0.0.2

1: host 10.0.0.1 sends

5:10.0.0.1, 3345
D: 128.119.40.186, 80

§:138.76.29.7, 5001
D: 128.119.40.185, 80

j 110.0.0.4
138.76.207 | E

§:128.119.40.186, 80

D: 138.76.29.7, 5001

3: reply arrives, destination
address: 138.76.29.7, 5001

5:128.119.40.186, 80
D: 10.0.0.1, 3345

10.0.0.3

e pros and cons
pros: extensively used in home and institutional nets, 4G / 5G cellular nets
cons (controversial):
routers should only process up to layer 3
address shortage should be solved by IPv6
violates end-to-end argument (port # manipulation by network-layer device)
NAT traversal: what if client wants to connect to server behind NAT?

af://n756

4.3.4 IPv6

1. IPv6 Datagram format

flow label: identify

priority: identify 32 bits datagrams in same
ori ori'.cy among _ [ver [pri | | flow Iabei — ":Iow." (concept off)
- payload len next hdr | hop limit “flow” not well defined).
datagrams in flow S0Ureo addrecs
128-bit_—1— (128 bits)
IPvE addresses“‘-_ destination address
(128 bits)
payload (data)

What’s missing (compared with IPv4):

= no checksum (to speed processing at routers)

= no fragmentation/reassembly

= no options (available as upper-layer, next-header protocol at router)

40-byte fixed length header
hop Timit == TTL, ER—RIREN32/64 (BR—RET 101 ERHER, EIP201)

2. tunneling and encapsulation
transition from IPv4 to IPv6
tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers (“packet within

a packet”)

IPv4 header fields IPv6 header fields
|Pv4 sgurce, dest addr IPv6 source dest addr

UDP/TCP payload __—
./

|Pv4 payload

A
LI L I \ || TT% T ||
(|

+«—|Pv6 datagram ——*

+ IPv4 datagram

tunneling and encapsulation:

af://n767
af://n768
af://n773

. A B Ethernet connects two ¢ E
Ethernet connecting = (== IPV6 routers
two IPv6 routers: - g —
wo - 6 IPve N 9> IPv6 IPv6
/‘{—— ‘ ‘ ‘ | ‘ IPv6 datagram |

Link-layer frame Thg ysual: datagram as payload in link-layer frame
IPv4 network
connecting two
IPv6 routers

IPv4 network

IPv4 tunnel A B IPv4 tunnel
. a— =—=-. Connecting IPv6 routers E F
connecting two == (== ==
IPv6 routers IPv6 IPv6/v4 ‘ > IPv6/v4 IPV6
e [I T T ivedatagram]
IPv4 datagram tunneling: IPv6 datagram as payload in a IPv4 datagram
A B IPv4 tunnel E
. . connecting IPv6 routers
logical view:
IPv6 IPv6/v4 IPvB/v4 IPvE
A B C D E F
physical view:
IPv6 IPvG/v4 IPv4 1Pv4 IPvB/v4 IPv6

e

flow; X
rc: A
dest: F,

Note source and data
destination
addresses!
AloB: Bioc: BtoC: BioC: Lob
IPv6 inside IPv6 inside |Pv6 inside
1Pvd IPv4 1Pvd

e |Pv6 adoption
Google: ~ 30% of clients access services via IPv6
NIST: 1/3 of all US government domains are IPv6 capable

4.4 Generalized Forwarding (SDN) and Middleboxes

4.4.1 Match + action

af://n785
af://n786

Review: each router contains a forwarding table (aka: flow table)
= “match plus action” abstraction: match bits in arriving packet, take action
 destination-based forwarding: forward based on dest. IP address
* generalized forwarding:
* many header fields can determine action
* many action possible: drop/copy/modify/log packet

|
forwarding table] |
(aka: flow table)
values in arriving
Network Layer: 4-78

1. Flow table abstraction

flow: defined by header field values (in link-, network-, transport-layer fields)
generalized forwarding: simple packet-handling rules

match: pattern values in packet header fields

actions: for matched packet: drop, forward, modify, matched packet or send matched packet
to controller

priority: disambiguate overlapping patterns

counters: #bytes and #packets

src = **** dest=3.4.*.*| forward(2)

src=1.2.* * dest=**** | drop

src=10.1.2.3, dest=*.*.* * | send to controller
* - wildcard

Flow table
match | action

y——————
Network Lay
2. OpenFlow Protocol

OpenFlow is a protocol that enables the communication between the control plane and the
data plane of a Software-Defined Networking (SDN) architecture.

It allows the control plane to dynamically program the forwarding behavior of network
devices, such as switches and routers, by installing and updating flow rules in their flow
tables.

o flow table entries

Match Action Stats

| Packet + byte counters

1. Forward packet to port(s)

2. Drop packet

3. Modify fields in header(s)

4. Encapsulate and forward to controller

Header fields to match:

Ingress D ¥ ¥ PSic 1P Dst TCP/UDP TCP/UDP

Port | MAC = MAC Proto = ToS SrcPort DstPort

L I 1]l J

T T T
Link layer Network layer Transport layer

e examples

af://n788
af://n791

Destination-based forwarding:

Switch| MAC | MAC | Eth | VLAN [VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type | ID Pri Src | Dst | Prot | Tos [s-port|d-port| A€t

* * * * * * * 51.6.08 * * * * portb
IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Switch| MAC | MAC | Eth [VLAN |VLAN IP IP P IP TCP | TCP Action
Port | src dst | type | ID Pri Src | Dst | Prot | ToS | s-port|d-port

* * * * * * *

* - * * 22 drop
Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Switch| MAC | MAC | Eth |[VLAN | VLAN IP IP IP IP TCP | TCP Action
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|{d-port
* * * % * * 12811911 * * * * * drop

Block (do not forward) all datagrams sent by host 128.119.1.1

Layer 2 destination-based forwarding:

Switch| MAC | MAC Eth | VLAN | VLAN 1P IP IP IP TCP | TCP Action
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port

22:AT7:23:

* * 1:En02 ¥ * * * * * * * * port3

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

o match + action: abstraction unifies different kinds of devices

Router Firewall

* match: longest * match: IP addresses and
destination IP prefix TCP/UDP port numbers

* action: forward out a * action: permit or deny
link

Switch NAT

* match: destination MAC « match: IP address and port
address * action: rewrite address and

* action: forward or flood port

o orchestrated tables can create network-wide behavior

match action
PSic=103"7 [0 o Host h6 Orchestrated tables can create
IPDst=102"" . network-wide behavior, e.g.,:
= datagrams from hosts h5 and
h6 should be sent to h3 or h4,
via 51 and from there to s2
1 s2
Host h1 Host h4
iy g
10.1.0.1 4 2
53_) 10.2.04
" h action
match action Hostha matc
:rl;géess p;:ng; 1 . @ :lgit.g_zz 10.2.0.3 :ggézstipﬁr;z: 023 forward(3)
rc= 3. ‘orwal 2.0,
- . ingress port = 2
IP Dst=10.2.*. IP Dst = 10.2.0.4 forward(4)

Network Layer: 4-86

4.4.2 Middleboxes

Firewalls, IDS: corporate,
institutional, service providers,

ISPs
NAT: home,
cellular,
institutional
Load balancers:
corporate, service
provider, data center,
i mobile nets
P !
Apr-)l-lcatlon. =r DNSh R — T 4R BT
specific: service prows
providers, . ‘
institutional, =i C.E:jChES- ;?erIE%N
rovider, mobile s
CDN enterprise p ! !

content delivery network network &

Initially: proprietary (closed) hardware solutions
move towards: “whitebox” hardware implementing open API

move away from proprietary hardware solutions

programmable local actions via match+action

move towards innovation/differentiation in software
SDN: (logically) centralize control and configuration management often in private/public cloud
network functions virtualization (NFV): programmable services over white box networking,
computation, storage

1. IP protocol: that narrow waist

C)

HTTP SMTP RTP
Quic DASH

Internet’s “thin waist”:

= one network layer
protocol: IP

® must be implemented
by every (billions) of

many protocols
in physical, link,
transport, and
application

TCP UDP

Ethernet PPP

Internet-connected PDCP WiFi Bluetsoti layers
devices
copper radio fiber
(o J
[4)
HTTP SMTP RTP
QUIC DASH '

Internet’s middle age

“love handles”?

= middleboxes,
operating inside the
network

TCP UDP
\\\P:‘ calcsing 4’/(‘1/
Firewalls

Ethernet PPP
PDCP WiFi Bluetooth

/ copper radio fiber \

[o J

2. simple connectivity: end-end argument

the first graph is preferred in the following picture

af://n810
af://n813
af://n816

end-end implementation of reliable data transfer
transport g -
network

| network |
data link

transport

physicl :QI
]
| — —

network

hop-by-hop (in-network) implementation of reliable data transfer transport

]

=
= g
& -]
-]

20t century phone net: Internet (pre-2005) Internet (post-2005)
* intelligence/computing at + intelligence, computing at * programmable network devices
network switches edge + intelligence, computing, massive

application-level infrastructure at edge

Chapter 5: Network Layer: Control Plane

Two approaches to structuring network control plane:
per-router control (traditional)
logically centralized control (software define networking)

Per-router control plane

Individual routing algorithm components in each and every
router interact in the control plane

= control
l_ plane
Local‘oglvarding data
header | outpat plane
0100 3
0110 2
ot :
1001 :

values in arriving
packet heade

af://n819
af://n822

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

control
plane

values in arriving @

packet header

Network Lay

CA: Controller Agent

5.1 routing protocols

goal: determine good (least cost, fastest, least congested) paths from sending hosts to receiving
host through network of routers

Routing algorithm classification

t
global: all routers have complete

topotegyink cost info
'Igorithms
How fast ‘ dynamic: routes change

doroutes Static: routes change
change? slowly over time

more quickly

» periodic updates or in
response to link cost
changes

decentralized: iterative process of

computation, exchange of info with neighbors

* routers initially only know link costs to
attachedreighbors

“distance vector”,

algorithms

global or decentralized information?

Network Layer: 5-10

5.1.1 Dijkstra’s link state

KR, FTONIRIEH
{EREER, FASHENO(n?)
{#Ffibonaccitft, RHAISZENO(nlogn)

iterative: after k iterations, know least cost path to k destinations

Notation:

Cg - direct link cost from node x to y = oo if not direct neighbors

D(v): current estimate of cost of least-cost-path from source to destination v
p(v): predecessor node along path from source to v

N': set of nodes whose least-cost-path definitively known

Example:

af://n826
af://n830

Initialization (step 0): For all a: if o adjacent to then Dfa) = ¢, ,

find @ not in N’ such that D(a) is a minimum

addato N’

update D(b) for all b adjacent to a and notin N':
D(b) = min (D(b), Dfa) + ¢, ,)

S—

Dijkstra&EpkHIshortest path treeA~—xEEminimal spanning tree

e Messages Complexity

each router must broadcast its link state information to other n routers

efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

each router’'s message crosses O(n) links: overall message complexity: O(n?)

Oscillation Possible

sample scenario:
routing to destination a, traffic entering at d, ¢, b with rates 1, e (<1), 1
link costs are directional, and volume-dependent

given these costs, given these costs, given these costs,
initially find new routing.... find new routing.... find new routing....
resulting in new costs resulting in new costs resulting in new costs

5.1.2 Bellman-Ford's distance vector - RIP

KEPFERAER, JLAFIMATRINEIRE

Based on Bellman-Ford (BF) equation (dynamic programming):

— Bellman-Ford equation

Let D,(y): cost of least-cost path from x to y.
Then:

Dy(y) = min, {c,,+Dyy) }

v's estimated least-cost-path cost to y

min taken over all neighbors v of x direct cost of link from x to v

Naturally, the estimate D, (y) converge to the actual least cost d(y)

e algorithm analysis

iterative, asynchronous: each local iteration caused by:
local link cost change

af://n844

DV update message from neighbor
distributed, self-stopping: each node notifies neighbors only when its DV changes

neighbors then notify their neighbors - only if necessary

no notification received, no actions taken!

Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n?) messages sent

DV: exchange between neighbors;
convergence time varies

speed of convergence
LS: O(n?) algorithm, O(n?) messages
* may have oscillations

DV: convergence time varies
* may have routing loops
* count-to-infinity problem

problem: count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:
= router can advertise incorrect link cost
= each router computes only its own
table
DV:

* DV router can advertise incorrect path
cost (“I have a really low cost path to
everywhere”): black-holing

* each router’s table used by others:
error propagate thru network

potential solution: split horizon with poison reverse technique (but not completely)

X

2 1
X: Bellman-Ford's Distance Vector (RIP)
& 7 & Y: count to infinity
Z: split horizon with poison reverse
Node x table technique
cost to cost to cost to
| xy z | xy z | xy z
- X L’_,-{}i 27_7) X f_,'@i _2 ;73 - X 0 2 3 the "X_y(2)|| and "X-Z(1)..
Y| == y | 201 sy | 201 for example, x-y changes from 2 to 50
— N—
z © oo oo zZ 71 Q z 3 1 0

5.2 scalable routing

aggregate routers into regions known as “autonomous systems"” (AS) (a.k.a. “domains”)

e intra-AS (a.k.a. intra-domain): routing among within same AS (“network”)

all routers in AS must run same intra-domain protocol
routers in different AS can run different intra-domain routing protocols
gateway router: at “edge” of its own AS, has link(s) to router(s) in other AS'es

Most common intra-AS routing protocols:

o RIP: Routing Information Protocol

classic DV: DVs exchanged every 30 secs

no longer widely used

o EIGRP: Enhanced Interior Gateway Routing Protocol

DV based

formerly Cisco-proprietary for decades

o OSPF: Open Shortest Path First
link-state routing

af://n852
af://n1374

IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF
e inter-AS (a.k.a. inter-domain): routing among AS'es, use BGP algorithm
gateways perform inter-domain routing (as well as intra-domain routing)

===, (orwardingtable configured by intra-
and inter-AS routing algorithms
outing

forwarding
table

®= intra-AS routing determine entries for
destinations within AS

= inter-AS & intra-AS determine entries
for external destinations

5.2.1 intra-AS: OSPF

IGP (intra-AS routing): BRFHIRFBRIP, Z ISR OSPF, ISIS

Open: publicly available
Classic link-state:

each router floods OSPF link-state advertisements (directly over IP rather than using
TCP/UDP) to all other routers in entire AS

multiple link costs metrics possible: bandwidth, delay

each router has full topology, uses Dijkstra’s algorithm to compute forwarding table
security: all OSPF messages authenticated (to prevent malicious intrusion)

Inter-AS routing: a role in intradomain forwarding

* suppose router in AS1 receives AS1 inter-domain routing must:
datagram destined outside of AS1: 1. learn which destinations reachable
9' router should forward packet to through AS2, which through AS3
¢ gateway router in AS1, but which 2. propagate this reachability info to all
one? routers in AS1

other
networks

other
networks

Hierarchical OSPF

= two-level hierarchy: local area, backbone.
* link-state advertisements flooded only in area, or backbone

* each node has detailed area topology; only knows direction to reach
other destinations

boundary router:
connects to other ASes

R backbone router:

=N runs OSPF limited
to backbone

area border routers:
“summarize” distances to

destinations in own area, —_—
7

advertise in backbone

local routers:
* flood LS in area only . . == _area 3
* compute routing within =< —— ==
area == :
» forward packets to outside N ’ \ . -
via area border router

af://n875
af://n879

5.2.2 inter-AS: BGP

BGP / Border Gateway Protocol: the de facto inter-domain routing protocol

BGP provides each AS a means to:
eBGP (path vector): obtain subnet reachability information from neighboring ASes
iBGP : propagate reachability information to all AS-internal routers.
determine “good” routes to other networks based on reachability information and policy

@ T e

" AS 2 ‘

AS 1 — = — eBGP connectivity AS 3
------ logical iBGP connectivity

gateway routers run both eBGP and iBGP protocols

1. BGP session

Two BGP routers (“peers”) exchange BGP messages over semi-permanent TCP connection:
advertising paths to different destination network prefixes (BGP is a “path vector” protocol)

when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
AS3 promises to AS2 it will forward datagrams towards X

2. Path attributes

BGP advertised route: prefix + attributes
prefix: destination being advertised
two important attributes:
AS-PATH : list of ASes through which prefix advertisement has passed
NEXT-HOP : indicates specific internal-AS router to next-hop AS

policy-based routing:

gateway receiving route advertisement uses import policy to accept/decline path (e.g., never
route through ASY).

AS policy also determines whether to advertise path to other neighboring ASes

= AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

= based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all
AS2 routers

= based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to
AS1 router 1c

af://n882
af://n886
af://n890

BGP path advertisement (more)

AS 3

gateway router may learn about multiple paths to destination:
» AS1 gateway router 1c learns path AS2,AS53,X from 2a
= AS1 gateway router 1c learns path AS3,X from 3a

= based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path
within AS1 via iBGP

local link
interfaces
at 1a, 1d

>

dest | interface | = recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

w1 ®* at 1d: OSPF intra-domain routing: to get to 1c, use interface 1
X |1 » at 1d:to get to X, use interface 1

ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic
between other ISPs - a typical “real world” policy)

— / provider
| network
~ legend:
Aw 2 customer
network:

A advertises path Awto Band to C

B chooses not to advertise BAw to C!
= B gets no “revenue” for routing CBAw, since none of C, A, w are B’s customers
» Cdoes not learn about CBAw path

C will route CAw (not using B) to gettow

A,B,C are provider networks

= x,w,y are customer (of provider networks)

x is dual-homed: attached to two networks

policy to enforce: x does not want to route from B to C via x
» . so x will not advertise to Barouteto C

Network Layer: 5-61

3. Hot potato routing
——closest NEXT-HOP router

hot potato routing: choose local gateway that has least intra-domain cost (e.g., 2d chooses 2a,
even though more AS hops to X): don't worry about inter-domain cost!

af://n898

4. priority for BGP

router may learn about more than one route to destination AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH
3. closest NEXT-HOP router: hot potato routing
4. additional criteria

5.3 SDN control plane

e Per-router control plane: Individual routing algorithm components in each and every

router interact in the control plane to computer forwarding tables

* D

N, =

Local ferwarding
tabla

header | output

0100
0110
om
1001

-

values in arriving
packet heade

control
plane
data
plane

e SDN control plane: Remote controller computes, installs forwarding tables in routers

B[P o &

control
plane

values in arriving

-+
-
-
|

packet header

af://n1452
af://n903

o easier network management: avoid router misconfigurations, greater flexibility of
traffic flows

o table-based forwarding (recall OpenFlow API) allows “programming” routers:
centralized “programming” easier: compute tables centrally and distribute
distributed “programming” more difficult: compute tables as result of distributed
algorithm (protocol) implemented in each-and-every router

o open (non-proprietary) implementation of control plane:
foster innovation: let 1000 flowers bloom

5.3.1 traffic engineering

1. difficulty with traditional routing

Q: what if network operator
wants to split u-to-z traffic
along uvwz and uxyz (load
balancing)?

A: can’t do it (or need a new
routing algorithm)

Q: what if w wants to route
blue and red traffic differently
from w to z?

A: can’t do it (with
destination-based forwarding,
and LS, DV routing)

2. SDN / Software Defined Networking

Toutng .’imss o 3. control plane functions
4. programmable (oung) (3 o balancs external to data-plane
contfol . switches
applications —= Remote Controller
H /B Bt 5 n BENEE H
control
plane
< plane \

2. control, data
plane separation

:

1: generalized “flow-based” =
forwarding (e.g., OpenFlow) =

e Network-control apps, SDN controller, Data-plane switches:

Network Laver: 5-7

af://n919
af://n920
af://n922

network-control apps: network-control applications

= “brains” of control: implement control functions
using lower-level services, API provided by SDN
controller
* unbundled: can be provided by 3" party: distinct from .
routing vendor, or SDN controller
__________ contrel
SDN controller (network OS): northbound AP/~ Plane
* maintain network state information
. ::;:aracts with network control applications “above” via northbound SDN Controller
= interacts with network switches “below” via southbound API H (network operatlng syStem)
= implemented as distributed system for performance, scalability, fault-
tolerance, robustness southbound AP!
Data-plane switches: TS TTTTT-T-s========
= fast, simple, commodity switches implementing generalized data-plane
forwarding (Section 4.4) in hardware data
= flow (forwarding) table computed, installed under controller supervision plane
= API for table-based switch control (e.g., OpenFlow) l
= defines what is controllable, what is not SDN. trolled itch
= protocol for communicating with controller (e.g., OpenFlow) -controlied swiicnes |
e Components of SDN controller:
interface layer to network
control apps: abstractions API
network-wide state
management : state of - SDN
networks links, switches, controller

services: a distributed database T m

communication: communicate
between SDN controller and
controlled switches

5.3.2 OpenFlow, OpenDaylight, ONOS

e OpenFlow

Dijkstra’s link-state

; @ S1, experiencing link failure uses OpenFlow
routing

port status message to notify controller

RESTful | [(2) SDN controller receives OpenFlow message,

API

updates link status info

- ﬂow tables (3) Dijkstra’s routing algorithm application has

previously registered to be called when ever link

m | m status changes. Itis called.
N

@ Dijkstra’s routing algorithm access network
graph info, link state info in controller,
computes new routes

@ link state routing app interacts with flow-
table-computation component in SDN
controller, which computes new flow tables
needed

@ controller uses OpenFlow to install new
tables in switches that need updating

e OpenDaylight

af://n932

Traffic
Load Batancing Network Orchestrations and Applications

Northbound API
Topology = Switch Stats
processing mgr. mgr.
rules mgr. Tracker . .
Service Abstraction Layer:
P et Service Abstraction = interconnects internal,
Layer (SAL) external applications
------------------------- Southbound API and services

OpenFlow NETCONF SNMP OVSDB

e ONOS controller

Traffic
Load Bglancing, Network Applications

Northbound API = control apps separate

from controller
= intent framework: high-
Ieve! specification of
service: what rather
than how
= considerable emphasis
on distributed core:
service reliability,

OpenFlow i Netconf W OVSDB| replication performance
Southbound API scaling

device | link | host | flow | packet |

5.4 ICMP: Internet Control Message Protocol

used by hosts and routers to communicate network-level information
error reporting: unreachable host, network, port, protocol
echo request/reply (used by ping)

ICMP is a network-layer protocol

network-layer “above” IP: ICMP messages carried in IP datagrams

ICMP message: type, code plus first 8 bytes of IP datagram causing error

ode description
echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable
dest network unknown
dest host unknown

source quench (congestion
control - not used)

echo request (ping)

route advertisement
router discovery

TTL expired

bad IP header

w0 ™ hmmmmmmog
@
O~NOWMN-=0OO0

-
- o
[=R=NeNoNe]

-
N

af://n944

Traceroute and ICMP

=

stopping criteria:

* source sends sets of UDP segments to

destination = UDP segment eventually

* 1% sethas TTL =1, 2"¢ set has TTL=2, etc. arrives at destination host
= datagram in nth set arrives to nth router: = destination returns ICMP

* router discards datagram and sends source “port unreachable”

message (type 3, code 3)
» source stops

ICMP message (type 11, code 0)

* ICMP message possibly includes name of
router & IP address

= when ICMP message arrives at source: record RTTs

Chapter 6: Link Layer and LANs

Terminology

nodes: hosts and routers

links: communication channels tha connect adjacent nodes, classified as wired, wireless
and LANs

frame: layer-2 packet, encapsulates datagram

link layer has responsibility of transferring datagram from one node to physically adjacent node
over a link

¢ link layer services: framing / link access, rdt between adjacent nodes, flow control, error
detection, error correction, half-duplex and full-duplex
use MAC addresses in frame headers to identify source and destination

e implementation: implemented in host, NIC (network interface card) / chip, attaches into
host's system buses, combination of hardware\software\firmware...

Interfaces communicating

application application
ransport transport
datagram hetwnrk cpu memory memory cPU network

! link ‘ link

I
|i|"lkh Tk i w"*";;“' : : contoller i link i
physical - 1 | - physical
physical physical

| P I___;.__ ‘

sending side: receiving side:
= encapsulates datagram in frame ® |ooks for errors, reliable data

= adds error checking bits, reliable data transfer, flow control, etc.

transfer, flow control, etc. = extracts datagram, passes to

upper layer at receiving side

af://n952

6.1 Error Detection and Correction

EDC: error detection and correction bits

: data protected by error checking, may include header fields

Error detection not 100%
otherwise reliable!
cal S = protocol may miss
oK ggrtgrcted some errors, but rarely

l— d data bits - "
1
| D [EDC | | D’ | EDC’

J correction
.-mmm_
1. Parity checking
e single bit parity: detect single bit errors
(set parity bit so there is an even number of 1's)
e two-dimensional bit parity: detect and correct single bit errors
(use column parity + row parity)
row parity
d1,1 T d1,j d1,j+1
|312,1 e dz,i dz,jﬂ
column dis U di*i dirJ'*l
parity
di+1,1 T di+1,j di+1,j+1
noerrors: 10101|1 detected 10101]1
11110[0 correct:t;'ig O N s
011101 single-bit 01110/(1
10101(0 errorr 1010110
parritl,r

more error

2. Cyclic Redundancy Check (CRC)

D: data bits (given, think of these as a binary number)
G: bit pattern (generator), of r+1 bits (given)

goal: choose r CRC bits, R, such that <D, R> exactly divisible by G (mod 2)
receiver knows G and divided <D, R> by G. if non-zero remainder: error detected!
can detect all burst errors less than r+1 bits
widely used in practice (Ethernet, 802.11 WiFi)

r CRC bits
I~ d data bits pe=>g]
I D [R) ———— bitpattern
N/]
<D,R>=D=*2" XOR R —— formula for bit pattern

= larger EDC field yields
better detection and

af://n963
af://n966
af://n973

D =101110, G=1001 (r = 3)

We want: G 1
— 01011
D2" XOR R =nG 1001101110000
or equivalently: 1001
D2"=nG XOR R 590 D+ 2r
or equivalently: 1 01 2
if we divide D-2" by G, want 0 [13 10
remainder R to satisfy: 000
_ 1100
R=remainder[02r] 1001
1010
1001
011
;‘_l
R

Thus the result shall be: R =011

6.2 Multiple Access Protocols

6.2.1 two types of "links"

e point-to-point: point-to-point link between Ethernet switch and host
e broadcast (shared wire or medium): old-fashioned Ethernet, upstream HFC in cable-based
access network (main focus of this chapter)

1 8,5
e J .
@& =%
— E T2 55
S5 b B Y
shared wire (e.g., shared radio: 4G/5G shared radio: WiFi shared radio: satellite humans at a cocktail party
cabled Ethernet) (shared air, acoustical)

6.2.2 Multiple Access Protocols

e usage scenario: single shared broadcast channel
a single communication channel that is shared by multiple nodes
This channel is typically a broadcast channel (any transmission on it is received by all nodes)

e targeted problem: Interference from simultaneous transmissions
collision if node receives two or more signals at the same time

e multiple access protocol

o distributed algorithm for channel sharing
determines how the nodes share the channel and when each node can transmit its data
o Communication about channel sharing using the channel itself
no separate "out-of-band" channel available for coordination
the same channel used for transmitting data also used for exchanging control
information and coordinating access among the nodes

af://n984
af://n985
af://n993

An ideal multiple access protocol:

given: multiple access channel (MAC) of rate R bps
desiderata:

1. when one node wants to transmit, it can send at rate R.
2. when M nodes want to transmit, each can send at average rate %
3. fully decentralized

no special node to coordinate transmissions

no synchronization of clocks, slots

4. simple
1. channel partitioning

divide channel into smaller “pieces” (time slots, frequency, code)
allocate piece to node for exclusive use

e TDMA: time division multiple access
access to channel in “rounds”
each station gets fixed length slot (length = packet transmission time) in each round
unused slots go idle
example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

, 6-slot , 6-slot ,
: frame : frame —————*

e FDMA: frequency division multiple access
channel spectrum divided into frequency bands
each station assigned fixed frequency band
unused transmission time in frequency bands go idle

time

_EEes——
W, g
(1]
o]

i 2 H—‘ MAMMN é* _Eesssss——

g |
FDM cable W/V\i E ,

2. random access

channel not divided, allow collisions
“recover” from collisions

e when node has packet to send, transmit at full channel data rate R (no a priori coordination
among nodes)
e problem to be solved
how to detect collisions + how to recover from collisions
e example of random access MAC protocols:
ALOHA, slotted ALOHA
CSMA, CSMA/CD, CSMA/CA

1. ALOHA

af://n1019
af://n1029

o Slotted ALOHA

assumptions: operation:
= all frames same size * when node obtains fresh
= time divided into equal size frame, transmits in next slot
slots (time to transmit 1 frame) * if no collision: node can send
= nodes start to transmit only new frame in next slot
slot beginning * if collision: node retransmits
" nodes are synchronized frame in each subsequent
= if 2 or more nodes transmit in slot with probabllltntll

slot, all nodes detect collision success /

randomization — why?

node 1 lI\ IIl lIl

node2 [[N 2N C: collision
S: success

noce s [L] [z] E: empty

1ttt
Cc E C S E C E S S
PFOSZ cOns:
= single active node can = collisions, wasting slots
continuously transmit at full rate = idle slots

of channel

= highly decentralized: only slots in
nodes need to be in sync

= simple

® nodes may be able to detect collision in
less than time to transmit packet

= clock synchronization

Efficiency proof: (more efficient that pure ALOHA at the expense of node
synchronization)

= suppose: N nodes with many frames to send, each transmits in slot
with probability p
* prob that given node has success in a slot = p(1-p)V?
* prob that any node has a success = Np(1-p)N-?
* max efficiency: find p* that maximizes Np(1-p)¥-!
« for many nodes, take limit of Np*{1-p*)¥-2as N goes to infinity, gives:
max efficiency = 1/e =.37

® gt best: channel used for useful transmissions 37% of time!

o Pure ALOHA

unslotted Aloha: simpler, no synchronization
when frame first arrives: transmit immediately
collision probability increases with no synchronization
frame sent at t¢ collides with other frames sent in [t0 — 1,¢0 + 1]

will overlap will overlap
! with start of H with end of .
4— j's frame —*+— i'sframe —|

L ;
! ———
t,-1 to t,+1

Efficiency = 18%
2. CSMA / Carrier Sense Multiple Access

o simple CSMA: listen before transmit
if channel sensed idle: transmit entire frame
if channel sensed busy: defer transmission

o CSMA/CD: with collision detection
collisions detected within short time
colliding transmissions aborted, reducing channel wastage
collision detection easy in wired, difficult with wireless

After aborting, NIC (Network Interface Card, f-K) enters binary (exponential) backoff:
after m'" collision, NIC chooses K at random from {0,1,2,...,2m — 1}.NIC

waits K + 512 bit times, returns to Step 2
more collisions: longer backoff interval

* T,rop = Max prop delay between 2 nodes in LAN
® t,.n = time to transmit max-size frame
. 1
efficiency= ————
1+5¢ pmp/ ttmns

= efficiency goes to 1
*asty,, goesto0
* as t,,,,s goes to infinity

" better performance than ALOHA: and simple, cheap, decentralized!

o CSMA/CA: with collision avoid
3. "Taking turns" MAX protocols

o channel partitioning MAC protocols
share channel efficiently and fairly at high load

inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1

active node!

o random access MAC protocols
efficient at low load: single node can fully utilize channel
high load: collision overhead

o taking-turns
polling from central site, token passing

polling:
= controller node “invites” other
nodes (clients)to transmit in turn

= typically used with “dumb”
devices

= concerns:
* polling overhead
* latency ——

* single point of failure clients
(controller)

token passing: &

» control token passed from one
node to next sequentially.

(nothing
= token message to send
® concerns: d

* token overhead '
* latency

* single point of failure

(token) i
e

6.3 LANs

6.3.1 addressing, ARP
1. IP and MAC

e 32-bit IP address
network-layer address for interface
used for layer 3 (network layer) forwarding
e.g.: 128.119.40.136

e MAC (or LAN or physical or Ethernet) address

function: used “locally” to get frame from one interface to another physically-connected
interface (same subnet, in IP-addressing sense)

48-bit MAC address (for most LANS) burned in NIC ROM, also sometimes software settable
e.g.: 1A-2F-BB-76-09-AD

allocated by IEEE

manufacturer buys portion of MAC address space

137.196.7.78
+—1A-2F-BB-76-09-AD

. (wired or wireless)
I 137.196.7/24)

71-685-F7-2B-08-53 58-23-D7-FA-20-B0
137.196.7.23 137.196.7.14

|
| l«— oc-c4-11-6F-E3-98
137.196.7.88

2. ARP: address resolution protocol

determine interfaces' MAC address using IP address

o ARP table: each IP node (host, router) on LAN has table
IP/MAC address mappings for some LAN nodes: < IP address; MAC address; TTL>
TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

e same LAN in action

af://n1078
af://n1079
af://n1080
af://n1089

example: A wants to send datagram to B
* B's MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

@ - destination MAC address = FF-FF-FF-FF-FF-FF Ethernet frame (sent to FF-FF-FF-FF-FF-FF)

« all nodes on LAN receive ARP query C Source MAC: 71-65-F7-2B-08-53
Source IP: 137.196.7.23
ARP table in A ‘Yw Target IP address: 137.196.7.14

[Paddr | maACaddr [rmi]

137.196. 5.23.57-FA-20-B0 500 °
IS0 =
| \ AW !

ARP message into Ethernet frame :;7615927722% -08-53 ?272?9277':1/;\{2080
@ (sent to 71-65-F7-2B-08-53) el 1 A
Target IP address: 137.196.7.14 I‘I B replies to A with ARP response,
Target MAC address: Lo
A TEASDED q giving its MAC address
B —— D

A receives B’s reply, adds B entry
into its local ARP table Link Layer: 6-44

e routing to another subnet

walkthrough: sending a datagram from A to Bvia R
* focus on addressing — at IP (datagram) and MAC layer (frame) levels

= assume that:
* A knows B’s IP address
* A knows IP address of first hop router, R (how?)
* Aknows R’s MAC address (how?)

%\ R /f.gB

111.111.111. 111
74-29-9C-EB-FF-55 EE— 222.222.222.222

1 49-BD-D2-C7-56-2A
’%, 222.222.222.220 .
7 1A-23-F9-CD-06-98 :
111.111.111.112 111.111.111.110
oA 1.111.111.11 222.222.222.221
E6-E9-00-17-BB-4B 88-B2-2F-54-1A-0F

1 3
= Acreates IP datagram with IP source A, destination B = R determines outgoing interface, passes datagram with 4
= A creates link-layer frame containing A-to-B IP datagram IP source A, destination B to link layer * B receives frame
R's MAC address is frame's destination 2 = R creates link-layer frame containing A-to-B IP extracts IP dataglram
= frame sent from Ato R datagram. Frame destination address: B's MAC address gactination B
MAC src: 74-29-9C-E8-FF-55 = frame received at R, datagram = B passes datagram up

MAC dest: E6-E9-00-17-BB-4B

IP src: 111411411111
IP dest: 222 222 222 222

removed, passed up to IP 33 FO-CD-06- rotocol stack to IP
MAC src: 1A-23-F9-CD-06-9B 1P sre: 111111111111;’

MAC dest: 49-BD-D2-C7-56-2A llp dest 222 222 992 999

IP sre: 111111411411
1P dest: 222 222 222 222

IP src; 111111111111
IP dest: 222 222 222 222

1P
Eth IP
Phy Eth IP

A % Phy /q Eth
Phy
T N R ‘%

111.111.111.111
74-29-9C-E8-FF-55 ——1 222 222.222.222

49-BD-D2-C7-56-2A
. — 222.222.222.220 N/
gf 1A-23-F9-CD-06-98 ™,
111.111.111.112 111.111.111.110
CC-49-DE-DO-AB-7D E6-E9-00-17-BB-4B 222.222.222.221

88-R2-7F-54-1A-0F

6.3.2 Ethernt

brief introduction: dominant wired LAN technology
first widely used LAN technology
simpler, cheap
kept up with speed race: 10 Mbps - 400 Gbps
single chip, multiple speeds (e.g., Broadcom BCM5761)

af://n1103

1. physical topology

bus (coaxial cable): popular through mid 90s
all nodes in same collision domain (can collide with each other)
switched: prevails today
active link-layer 2 switch in center
each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other)

bus: coaxial cable switched

2. frame structure

sending interface encapsulates IP datagram (or other network
layer protocol packet) in Ethernet frame

-

preamble | o45ikss | oo | data (payload)

preamble:
® used to synchronize receiver, sender clock rates
= 7 bytes of 10101010 followed by one byte of 10101011
addresses: 6 byte source, destination MAC addresses

= if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP
packet), it passes data in frame to network layer protocol

» otherwise, adapter discards frame

type: indicates higher layer protocol

* mostly IP but others possible, e.g., Novell IPX, AppleTalk
» used to demultiplex up at receiver

CRC: cyclic redundancy check at receiver

= error detected: frame is dropped Link Lay

SFD (Start Frame Delimiter): one byte of 10101011 which marks the end of the preamble and
indicates the start of the frame; this is also called the unique synchronization byte

Type: 2 bytes long
CRC: 4 bytes long
3. Ethernet characteristics

connectionless: no handshaking between sending and receiving NICs
unreliable: receiving NIC doesn’t send ACKs or NAKs to sending NIC

data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP),
otherwise dropped data lost

Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

The binary backoff algorithm specifies that the waiting time is chosen from a range of
exponentially increasing values.

af://n1105
af://n1108
af://n1113

802.3 Ethernet standards: link & physical layers:

many different Ethernet standards:
common MAC protocol and frame format
different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
different physical layer media: fiber, cable

o MAC protocol
application
and frame format
transport P
network |.<" .7 100BASE-TX | | 100BASE-T2 || 100AsE-7x |
link 1 100BASE-T4 W| 100BASE-SX | | 100BASE-BX |
physical .
copper (twister pair) physical layer fiber physical layer

6.3.3 switches

AftAroutersBIZ{THBASIRIBHAEE, BRswitchesAMtARAFE?
——ERFRERIEIRAL T — MERAIME (graph) |, switchesiEZRIRZtree, ZME—, FILIATE
SRR

mail server

to external

network
=k web server

IP subnet

switch: a link-layer device
store, forward Ethernet frames
examine incoming frame's MAC address and selectively forward them
use CSMA/CD to access segment
hosts unaware of presence of switches
do not need to be configured

1. multiple simultaneous transmission

® hosts have dedicated, direct
connection to switch

= switches buffer packets

= Ethernet protocol used on each
incoming link, so:
* no collisions; full duplex
* each link is its own collision

domain QA,
® switching: A-to-A’ and B-to-B’ can transmit
simultaneously, without collisions switch with six

* but A-to-A’ and C to A’ can not happen interfaces (1,2,3,4,5,6)

simultaneously

af://n1119
af://n1124

e each switch has a switch table, each entry is like: (MAC address of host, interface to reach
host, time stamp)

e fill the switch table through self-learning

when frame received at switch :
1. record switch table via M AC dest address
2. if entry found for destination then {
if destination on same segment as sender
then drop frame
else forward frame on inter face indicated by entry
else flood / x forward on all inter faces except the sender * /

(ARP helps hosts communicate to each other within the same segment)

2. switches vs. routers

Switches vs. routers —
application
ransport
both are store-and-forward: S e Q
rame 1N b
= routers: network-layer devices (examine [[ehysical Tink | frame
network-layer headers) ==\ [Pphysical
= switches: link-layer devices (examine switch
link-layer headers) P .
both have forwarding tables: = ph;:‘cal 0™
= routers: compute tables using routing —
algorithms, IP addresses transport
= switches: learn forwarding table using network
flooding, learning, MAC addresses link

phvysicat g

6.3.4 VLANs

VLANS: Virtual LANs, or Virtual Local Area Network, switch(es) supporting VLAN capabilities can be
configured to define multiple virtual LANS over single physical LAN infrastructure.

1. Port-based VLANSs

port-based VLAN: switch ports grouped (by
switch management software) so that
single physical switch

933

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

... operates as multiple virtual switches

EE (VLAN ports 1-8)

CS (VLAN ports 9-15)

af://n1133
af://n1136
af://n1138

= traffic isolation: frames to/from ports 1-8 can only
reach ports 1-8

= can also define VLAN based on MAC addresses of
endpoints, rather than switch port

AN

EE (VLAN ports 1-8) CZ(VLAN ports 9-15)

= dynamic membership: ports can be dynamically
assigned among VLANs

= forwarding between VLANS: done via routing (just as
with separate switches)
* in practice vendors sell combined switches plus routers

trunk port: carries frames between VLANS defined over multiple
physical switches

= frames forwarded within VLAN between switches can’t be vanilla
802.1 frames (must carry VLAN 1D info)

= 802.1q protocol adds/removed additional header fields for frames
forwarded between trunk ports Ports 2,3,5 belong to EE VLA
Ports 4,6,7,8 belong to CS VLAN

2.802.1Q VLAN frame format

type
O R R R R RO
d 2 - -
i i " type
——————————— ! e
I et {payioad) ‘ 802.1Q frame

2-byte Tag Protocol Identifier Recomputed

- 81- . CRC
(value: 81-00) 145 Control Information

(12 bit VLAN ID field, 3 bit priority field like IP TOS)

6.3.5 Link Virtualization: MPLS

MPLS: Multiprotocol Label Switching, operates between the IP routing layer and the MAC Ethernet
link layer (classified as link layer), header has 32 bits

goal: use fixed length label (instead of shortest prefix matching of IP) for faster lookup within
MPLS network, with the help of MPLS capable routers (a.k.a. label-switched router)

Also, MPLS allows the creation of VPNs by segregating traffic using different labels. This enables
secure and isolated communication between different sites in a network.

Ethernet remainder of Ethernet frame, including IP
header header with |IP source, destination addresses
label Exp S TTL
20 3 1 5

MPLS capable routers: forward packets to outgoing interface based only on label value (don't
inspect IP address, thus its forwarding decision could differ from IP)

af://n1141
af://n1144

1. routing comparision with IP

IP routing: path to destination determined by destination address alone

MPLS routing: path to destination can be based on source and destination address
flavor of generalized forwarding (MPLS 10 years earlier)
fast reroute: precompute backup routes in case of link failure

2. MPLS signaling

* modify OSPF, IS-IS link-state flooding protocols to carry info
used by MPLS routing:

* e.g., link bandwidth, amount of “reserved” link bandwidth

= entry MPLS router uses RSVP-TE signaling protocol to set up
MPLS forwarding at downstream routers

RSVP-TE

R4

maodified
link state
flooding

R2 R1

6.4 Data Center Networking

Datacenter networks: network elements

Border routers
= connections outside datacenter

Tier-1 switches
= connecting to ~16 T-2s below

Tier-2 switches
= connecting to ~16 TORs below

Top of Rack (TOR) switch

= one per rack
= 40-100Gbps Ethernet to blades

Server racks
= 20- 40 server blades: hosts

e multipath
rich interconnection among switches, racks:

increased throughput between racks (multiple routing paths possible)
increased reliability via redundancy

e application-layer routing

af://n1149
af://n1151
af://n1155

Internet

load balancer:

application-layer

routing

= receives external
client requests

= directs workload
within data center

= returns results to
external client

(hiding data center
internals from client)

e protocol innovations
link layer: RoCE: remote DMA (RDMA) over Converged Ethernet
transport layer:
ECN (explicit congestion notification) used in transport-layer congestion control (DCTCP,
DCQCN)
experimentation with hop-by-hop (backpressure) congestion control
routing, management:
SDN widely used within/among organizations' datacenters
place related services, data as close as possible (e.g., in same rack or nearby rack) to
minimize tier-2, tier-1 communication

Chapter 7: Wireless and Mobile Networks

Two important challenges of wireless link: 1. wireless, 2. mobility (change point of attachment)

o elements of a wireless network: wireless hosts, wireless link, base station

wireless hosts g I Y
* |aptop, smartphone, loT
= run applications

* may be stationary (non-mohbile) or mobile
* wirelessz does not always mean mobility!

wireless link (C('-?D
. = typically used to connect mobile(s) to base
wired network station, also used as backbone link

infrastructure

multiple access protocol coordinates link access
various transmission rates and distances,
frequency bands

base station :_ oF
® typically connected to wired network é

= relay - responsible for sending packets between
wired network and wireless host(s) in its “area”

+ e.g, cell towers, 802.11 access points

Two modes: infrastructure mode (base station), ad hoc mode (no base stations)

af://n1167

infrastructure mode——— /"’_"“\

® base station connects mobhiles
into wired network
g ® handoff: mobile changes base

station providing connection into
wired network

wired network
infrastructure

- ad hoc mode
®* no base stations

<]/(,I,, W ;; ® nodes can only transmit to other
e A ZF «I nodes within link coverage
l‘ - L " nodes organize themselves into a
ﬂ </ </ network: route among themselves
single hop multiple hops
inf host connects to base host may have to relay
Infrastructure | geation (WiFi, cellular) through several wireless
(e.g., APs) which connects to nodes to connect to larger
larger Internet Internet: mesh net
no base station, no no base station, no connection
_ no connection to larger to larger Internet. May have
infrastructure Internet (Bluetooth, ad to relay to reach other a given
hoc nets) wireless node MANET, VANET
e characteristics of selected wireless links
14 Gbps 802.11ax
10 Gbps 5G
3.5 Gbps 802.11ac
802.11 af,ah
600 Mbps 802.11n |
4G LTE
54 Mbps 802.11g
11 Mbps 802.11b
2 Mbps Bluetooth
Indoor Outdoor Midrange Long range
outdoor outdoor
10-30m 50-200m 200m-4Km 4Km-15Km

7.1 Wireless

7.1.1 wireless links and network characteristics

e Characteristics:

o decreased signal strength: radio signal attenuates as it propagates through matter
(path loss)

SNR (Signal-to-Noise Ratio): larger SNR => easier to extract signal from noise
BER (Bit Error Rate)

= given physical layer: increase power => increase SNR => decrease BER
= given SNR: choose physical layer that meets BER requirement, giving highest
throughput

af://n1179
af://n1180

SNR may change with mobility: dynamically adapt physical layer (modulation
technique, rate)

10+ T

' 1
\
10 '
\ \
104

i

\

' T
\ \

10-5 1
1
1

107 \

------- QAM256 (8 Mbps)
- — - QAM16 (4 Mbps)
—— BPSK (1 Mbps)

BER

10 20 30. 40
SNR(dB)

o interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared
by many devices (e.g., WiFi, cellular, motors)

= Hidden terminal problem BaiEu4E)ER + Signal attenuation

space

Hidden terminal problem Signal attenuation:

= B, A hear each other = B, A hear each other

= B, C hear each other = B, C hear each other

= A, Ccan not hear each other means A, = A, Ccan not hear each other
C unaware of their interference at B interfering at B

= Exposed terminal problem SEEEu4A)ER
A— AP TR S TISBHBRE T

BIETELEAESMY, MICGRIELDIEX Y

WIFiFICSMA/CARIIMY IR 7 IS fdiubin BN R EELA ARG ? f#:R T Hidden terminal
problem, {BEi&Ef#RExposed terminal problem

o multipath propagation: radio signal reflects off objects ground, arriving at destination
at slightly different times

1. CDMA / Code Division Multiple Access

e unique "code" assigned to each user, i.e., code set partitioning

all users share same frequency, but each user has own “chipping” sequence (i.e., code) to
encode data

allows multiple users to “coexist” and transmit simultaneously with minimal interference

af://n1208

(if codes are “orthogonal”)

encoding: inner product: (original data) X (chipping sequence)
decoding: summed inner-product: (encoded data) X (chipping sequence)

CDMA encode/decode

sender

I slot1 - slot 0
channel channel
output output

slot1 | slotO

receiver received
input

| slot1 | slot0
channel channel
output output

slot1 | slot0

... but this isn’t really useful yet!

CDMA: two-sender interference

transmissions by sender

/ channel sums together
land2

Sender 1 .

channel,Z;’

Sender2 % | N
code FL AL (R0 LA
U0 B Z-d

'm

using same code as sender
1, receiver recovers sender

i -»O 1’s original data from

summed channel datal

receiver I now that’s useful!

The codes for the two sender are ORTHOGONOL
2. CDMAHE

[CDMA, FECDMA

7.1.2 WiFi: 802.11 wireless LANs

IEEE 802.11 Max data rate |Range Frequency
standard

802.11b 1999 11 Mbps 30m 2.4 Ghz
802.11g 2003 54 Mbps 30m 2.4 Ghz

802.11n (WiFi4) [PhlE) 600 70m 2.4, 5 Ghz
R 2013 3.47Gpbs 70m 5 Ghz
OV REE VA 2020 (xp) 14 Gbps 70m 2.4, 5 Ghz

802.11af 2014 35-560 Mbps 1 Km unused TV bands
(54-790 MHz)

802.11ah 2017 347Mbps 1 Km 900 Mhz

= all use CSMA/CA for multiple access, and have base-station and ad-hoc
network versions

af://n1216
af://n1219

1. 802.11 LAN architecture

Basic Service Set / BSS: contains wireless hosts, access points (AP, or base station) (if ad hoc
mode: hosts only)

Intenet = wireless host communicates with
base station

» base station = access point (AP)

® Basic Service Set (BSS) (aka “cell”)
in infrastructure mode contains:

* wireless hosts
* access point (AP): base station

bclﬂ * ad hoc mode: hosts only

BSS 2

2. channel

e spectrum divided into channels at different frequencies
AP admin chooses frequency for AP
interference possible: channel can be same as that chosen by neighboring AP!

e arriving host: must associate with an AP
scans channels, listening for beacon frames containing AP's name (SSID) and MAC address,
selects AP to associate with
then may perform authentication
then typically run DHCP to get IP address in AP's subnet

e passive / active scanning

BBS 1 BBES 2 BBS 1 BBS 2
32 S5 33 o B
a:] L % - AP 2
AP1 ;L:% AP 2 AP1 \@)w/@}’;
H1 H1
passive scCa nning: active scanning:
(1) beacon frames sent from APs (1) Probe Request frame broadcast from H1
(2) association Request frame sent: H1 (2) Probe Response frames sent from APs
to selected AP (3) Association Request frame sent: H1 to
(3) association Response frame sent selected AP
from selected AP to H1 (4) Association Response frame sent from

selected AP to H1

3. MAC (Medium Access Control) Protocol: CSMA/CA
WiFi;&& CCollision detection, RECollision avoidance

avoid collisions (2+ nodes transmitting at same time):
802.11: CSMA - sense before transmitting
don't collide with detected ongoing transmission by another node
802.11: no collision detection
difficult to sense collisions: high transmitting signal, weak received signal due to
fading

af://n1221
af://n1224
af://n1233

can't sense all collisions in any case: hidden terminal, fading
goal: avoid collisions: CSMA / Collision Avoidance

802.11 sender:

1. if sense channel idle for DIFS (Distributed Inter-Frame Space), then transmit entire frame (no
CD)

DIFS is a time interval that needs to elapse before a device can transmit a frame if it
senses the channel as idle. It is a form of a waiting period that helps prevent collisions
and ensures fair access to the channel.

When a device has data to transmit and senses the channel as idle for at least the
duration of DIFS, it can proceed to transmit the entire frame without using Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) with collision detection (CD).

2. if sense channel busy then,
start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff interval, repeat 2

802.11 receiver:

1. if frame received OK, then return ACK after SIFS (Short Inter-Frame Space) (ACK needed due
to hidden terminal problem)

When a device receives a frame successfully and needs to send an ACK, it waits for a
period equal to SIFS before transmitting the ACK frame. This helps reduce delays and
ensures prompt acknowledgment of received frames, addressing issues like the hidden
terminal problem.

sender receiver

e addition collision avoidance: small RTS / request-to-send packet

sender first transmits small request-to-send (RTS) packet to BS using CSMA
BS broadcasts clear-to-send CTS in response to RTS
CTS heard by all nodes: sender transmits data frame + other stations defer transmissions

I 55 T
g A %AP B :f

reservation collision
RTs(A)
CTS(A) CTs(A)
time
defer
ACK(A) ACK(A)
2 2 6 6 6 2 6 0-2312 4
Address 1: MAC address Address 4: used only in
of wireless host or AP to ad hoc mode

receive this frame

Address 3: MAC address of
Address 2: MAC address router interface to which AP

of wireless host or AP is attached
transmitting this frame

4. advanced capabilities

e mobility
how does switch know which AP is associated with specific host?
——self-learning: switch will see frame from H1 and “remember” which switch port can be
used to reach H1

e rate adaptation
base station, mobile dynamically change transmission rate (physical layer modulation
technique) as mobile moves, SNR varies
1 SNR decreases, BER increase as node moves away from base station
2 When BER becomes too high, switch to lower transmission rate but with lower BER

e power management
beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next
beacon frame

e personal area networks: Bluetooth
less than 10 m diameter
replacement for cables (mouse, keyboard, headphones)
ad hoc: no infrastructure
master controller / clients devices: master polls clients, grants requests for client
transmissions

af://n1259

= TDM, 625 psec sec. slot

* FDM: sender uses 79 frequency (c} P
channels in known, pseudo-random D -
order slot-to-slot (spread spectrum) R coverage
+ other devices/equipment not in piconet only (c) 0o -

interfere in some slots &

= parked mode: clients can “go to sleep”

(park) and later wakeup (to preserve _
battery) @ master device

o client device

= bootstrapping: nodes self-assemble B) parked device (inactive)

(plug and play) into piconet

7.1.3 Cellular networks: 4G and 5G

the solution for wide-area mobile Internet
technical standards: 3rd Generation Partnership Project (3GPP)
4G: Long-Term Evolution (LTE) standard

Key differences from wired internet:
different wireless link layer
mobility as a 15t class service
user “identity” (via SIM card)
business model: users subscribe to a cellular provider
strong notion of “home network” versus roaming on visited nets
global access, with authentication infrastructure, and inter-carrier settlements

1. 4G LTE architecture

Mobile device: Home Subscriber Service
= smartphone, tablet, laptop, loT, ... with 4G LTE radio = stores info about mobile devices for which the HSS’s
= G4-bit International Mobile Subscriber Identity (IMSI), stored on network is their “home network” ,

SIM (Subscriber Identity Module) card = works with MME in device authentication /

= |TE jargon: User Equipment (UE)

: /
|k ra:;ot aciiss 4‘ Fnhanced Packet Core (EPC) —" /
Base station: (mv

= at “edge” of carrier’s network CEai® 2
= manages wireless radio resources, mohile
devices in its coverage area (“cell”)

= coordinates device authentication with other

e Base station
elements e {eNode-B)

Home Subscriber

Management If
Service (HSS)

Entity (MME)

= similar to WiFi AP but: - 7 |
* active role in user mobility - y y
* coordinates with nearly base stations to ‘>/ _ Internet
optimize radio use ed
| des i
= LTE jargon: eNode- - .
Jarg - >
" -
Mobility Management Entity —— 5

= device authentication (device-to-network, network-to-

device) coordinated with mobile home network HSS Serving Gateway (S-GW), PDN Gatewa

= mobile device management:
p hand : " = lie on data path from mobile to/from Internet
. i t . .
evice handover between cells = P-GW: 1. gateway to mobile cellular network 2. Looks like nay other
« tracking/paging device location i .)
internet gateway router 3. provides NAT services
= path (tunneling) setup from mobile device to P-GW

. . : -
other routers: extensive use of tunneling Wireless and Mobile Networks: 7- 39

2. LTE: data plane & control plane separation

af://n1271
af://n1274
af://n1276

Pl]
cﬂ‘——b +—

base station

control plane

= new protocols for mobility
management, security,
authentication (later)

base station

IP tunnels

e LTE data plane protocol stack:

data plane

= new protocols at link, physical
layers

= extensive use of tunneling to
facilitate mobility

LTE link layer protocols:

Packet Data Convergence: header
compression, encryption

Radio Link Control (RLC) Protocol:
fragmentation/reassembly, reliable data
transfer

Medium Access: requesting, use of radio
transmission slots

data
plane

LTE radio access network:

First hop:
Application
Transport
IP IP
T Packet Data Packet Data
o Convergence Convergence /
_‘_E' Radio Link Radio Link
i Medium Access Medium Access
Physical Physical \.
base station
Application
Transport -
IP IP
T Packet Data Packet Data
- Convergence Convergence
_I_E' Radio Link Radio Link
1 Medium Access Medium Access
Physical Physical

downstream channel: FDM, TDM within

frequency channel (OFDM - orthogonal

frequency division multiplexing)

* “orthogonal”: minimal interference
between channels

* upstream: FDM, TDM similar to OFDM

= each active mobile device allocated two or

“)
T

Packet core:

base station

more 0.5 ms time slots over 12 frequencies

* scheduling algorithm not standardized — up
to operator
* 100’s Mbps per device possible

tunneling:

GTP-U

. .
aTPL mobile datagram

ubp

UDP encapsulated using GPRS

P

P Tunneling Protocol (GTP),

link

sent inside UDP

link datagram to S-GW

Physicd

Physical S-GW re-tunnels

base station

association with a BS:

datagrams to P-GW
supporting mobility: only
tunneling endpoints
change when mabile
user moves

®_®_, data

plane
base station

@ BS broadcasts primary synch signal every 5 ms on all frequencies
= BSs from multiple carriers may be broadcasting synch signals

mobile finds a primary synch signal, then locates 2" synch signal on this freq.

* mobile then finds info broadcast by BS: channel bandwidth, configurations;
BS’s cellular carrier info

= mobile may get info from multiple base stations, multiple cellular networks
@ mobile selects which BS to associate with (e.g., preference for home carrier)

@ more steps still needed to authenticate, establish state, set up data plane

sleep mode:

data
plane

as in WiFi, Bluetooth: LTE mobile may put radio to “sleep” to conserve
battery:

® light sleep: after 100's msec of inactivity
= wake up periodically (100’s msec) to check for downstream transmissions
» deep sleep: after 5-10 secs of inactivity

= mobile may change cells while deep sleeping — need to re-establish association

e global cellular network: a network of IP networks

home network HSS:
%;‘:&;her = identify & services info,

while in home network

__ home maobile and roaming
f carrier network p-ew el e !
/ and _ :
inter-carrier IPX all Ip X .
in home network = carriers interconnect
with each other, and
. % public internet at
(g2’ 2 .
s . - exchange points
SIM card: global % _ visited mobile = legacy 2G, 3G: not all IP,
identify info in carrier network handled otherwise
home network S K

A) /
roaming in
visited network === %

(*) 4G/5G: TDMI + FDMI

7.2 Mobility

af://n1295

	计算机网络原理
	Chapter1: Network Overview
	1. a "nuts and bolts" view:
	2. protocols and standards overview:
	1.1 Internet Structure
	1.1.1 Network Edge
	1. Host: sends packets of data
	2. Links: physical media
	1.1.2 Network Core
	1. Packet Switching
	2. Circuit Switching
	3. Internet Structure
	1.2 Packet Delay and Loss
	1.2.1 Packet Delay
	1.2.2 Packet Loss
	1.2.3 Throughput
	1.3 Network Security
	1.4 Internet Layers

	Chapter2: Application Layer
	2.1 Paradigms
	2.1.1 Client-Server Paradigm
	2.1.2 Peer-Peer Architecture
	2.1.3 Processes Communicating
	1. Sockets
	2. General Principles

	2.2 Specific Analysis
	2.2.1 Web and HTTP
	1. HTTP overviews
	2. Two Types: Request && Response
	3. Stateful Protocol: cookies
	4. Version of HTTP

	2.2.2 E-mail, SMTP, IMAP
	1. SMTP: Three Major Components
	2. SMTP: Typical Scenario
	3. SMTP: Characteristics
	4. IMAP: mail access protocols

	2.2.3 DNS: Domain Name System
	1. iterated and recursive query
	2. DNS records and protocols

	2.3 Other Applications
	2.3.1 P2P Applications
	2.3.2 video streaming && content distribution networks

	2.4 Socket programming
	1. Python UDP
	2. Python TCP

	Chapter 3: Transport Layer
	3.1 Basic Functions and UDP
	3.1.1 Multiplexing and Demultiplexing
	3.1.2 UDP: connectionless transport
	1. Procedure
	2. UDP segement header

	3.2 Advanced Functions and TCP
	3.2.1 Reliable Data Transfer
	1. interfaces
	2. develop rdt protocol

	3.2.2 TCP: connection-oriented
	TCP segement structure
	1. TCP reliable data transfer
	2. TCP flow control
	3. TCP 3-way handshake
	4. TCP congestion control

	3.2.3 Evolution: QUIC

	Chapter 4: Network Layer: Data Plane
	4.1 Overview
	4.2 Router
	4.2.1 Router architecture overview
	4.2.2 Router architecture specifics
	1. input port
	2. switching fabrics
	3. queuing
	4. packet scheduling

	4.3 IP: Internet Protocol
	Network Layer Overview
	4.3.1 IPv4 Datagram format
	4.3.2 IP addressing
	1. Terms
	2. IP allocation: DHCP + ICANN
	4.3.3 NAT / network address translation
	4.3.4 IPv6
	1. IPv6 Datagram format
	2. tunneling and encapsulation

	4.4 Generalized Forwarding (SDN) and Middleboxes
	4.4.1 Match + action
	1. Flow table abstraction
	2. OpenFlow Protocol

	4.4.2 Middleboxes
	1. IP protocol: that narrow waist
	2. simple connectivity: end-end argument
	3. intelligence, complexity at network edge

	Chapter 5: Network Layer: Control Plane
	5.1 routing protocols
	5.1.1 Dijkstra's link state
	5.1.2 Bellman-Ford's distance vector - RIP
	Comparison of LS and DV algorithms

	5.2 scalable routing
	5.2.1 intra-AS: OSPF
	Hierarchical OSPF

	5.2.2 inter-AS: BGP
	1. BGP session
	2. Path attributes
	3. Hot potato routing
	4. priority for BGP

	5.3 SDN control plane
	5.3.1 traffic engineering
	1. difficulty with traditional routing
	2. SDN / Software Defined Networking

	5.3.2 OpenFlow, OpenDaylight, ONOS

	5.4 ICMP: Internet Control Message Protocol

	Chapter 6: Link Layer and LANs
	6.1 Error Detection and Correction
	1. Parity checking
	2. Cyclic Redundancy Check (CRC)

	6.2 Multiple Access Protocols
	6.2.1 two types of "links"
	6.2.2 Multiple Access Protocols
	1. channel partitioning
	2. random access

	6.3 LANs
	6.3.1 addressing, ARP
	1. IP and MAC
	2. ARP: address resolution protocol

	6.3.2 Ethernt
	1. physical topology
	2. frame structure
	3. Ethernet characteristics

	6.3.3 switches
	1. multiple simultaneous transmission
	2. switches vs. routers

	6.3.4 VLANs
	1. Port-based VLANs
	2. 802.1Q VLAN frame format

	6.3.5 Link Virtualization: MPLS
	1. routing comparision with IP
	2. MPLS signaling

	6.4 Data Center Networking

	Chapter 7: Wireless and Mobile Networks
	7.1 Wireless
	7.1.1 wireless links and network characteristics
	1. CDMA / Code Division Multiple Access
	2. CDMA其它

	7.1.2 WiFi: 802.11 wireless LANs
	1. 802.11 LAN architecture
	2. channel
	3. MAC (Medium Access Control) Protocol: CSMA/CA
	4. advanced capabilities

	7.1.3 Cellular networks: 4G and 5G
	1. 4G LTE architecture
	2. LTE: data plane & control plane separation

	7.2 Mobility

