


Prerequisites.
Gfmv\z Theory from /Wicro

Stoeqic~ form %o\m (2x2 Nash Bgutlibrivm) .
Extensive Form Gome , Swbogoum - P Equilibrivum
Cownot Gome , Stackelberg é? rfect B

Rapesited Gome . Bet‘rrawi Gome



Chotegic ~Form Games
Game Theory: mwlti-agent pptimization problems

Cowmnat (1838) . guawntity ~setting qame in eligopolishic competrion
John von Newnam' C1728) " " minimax” equalibrinm in zero=sum gaimes
John Nash ((32v) - Nash egualibrium \

Reinhasd Selten (1368) - perfectivn in dyramic games

John Hawsanyi ((967) - Bagesian equilibrium wndler iniomplete. info

A Game in Stategic form
Plowjers : maxinze. ovn payoff knowing others do the same
f possible sirategies B each player gimuliaencously, ctrottegy profile

Paoff o each ploujer at evers oufoome
- girictly domunamt stredegy
5. itetated gtrict domramee (1SD) ‘

iterotted. eliminaction of girivtly dominatesl <irategies (TESDS)

(4 erate weak domtinanmce

(the oot~ 0f deletidh may affect predittion)

3. Nagh euilibhum - mwduol best-replies , a seif-fulfilling prophecy

Example 3: Discrete Cournot H M L
— best-reply payoffs underlined H| 44 | 8,6 | 16,4
- unique survivor of ISD is (M,M) M| 68 9,9 | 15,5
—unique Nash is (M,M) L [416|5,15| 7,7

) mived girvitegy Nash egoalibrium 4""1@_"’“’“(!()@‘ Al
oy o e e othan itieres
Nashs Theotem L1930) - Every qame with ity many stigtegios
hao at least one Nasch equilibrinm in pure
or mixed strategies.

fun fact: if players have strict preferences over the outcomes then the number of Nash

equilibria is odd! (bwg ﬁV\oﬁVlGJ all Nash equilibria. ' computationally difficult)



H T If Row plays each strategy with 50% chance then the mathematical

HI 1111 expected value of Column’s payoffis 0.5 - (-1) + 0.5 -1 =0 from H,
= = 0.5-1+0.5-(-1) =0 from T, Column is indifferent, may mix
T]-1,1|1-1 If Column mixes 50-50 then Row is indifferent, may mix as assumed
= (0.5-H+0.5-T, 0.5-H+0.5-T) is mixed strategy Nash equilibrium
B S L I .
2 pure Nash equilibriums + 1 Nash equilibrium in mixed strategies:
B|&3d|22 if Ann plays B with probability p , S with probability (1 — p) then
S[10,0]3,5 Bob’s payoff from B is 3p, from S it is 2p + 5(1 — p) Bob is
indifferent iff 3p=2p +5 - 5p & p =5/6
mired Nagh . . . o
%Pﬂ S ‘6‘B‘I‘ 7;&) if Bob plays B with prob q and S with (1 — g), then Ann is indifferent
(Btv iff 50 + 2(1 — ) = 3(1 — q) equivalently q = 1/6
> paipffe=t 5 5

Nogh in 2x2 Games
Bxample : Hawk-Dove Game

Row Coluwnns
Lur R D ' 2 ’ i)
T [3,-3[80] e, r
«hB | 0,8 |22 ol = e
o 5 1T o ¥ 1o b
Row’ efpected payoff - ‘g %\L(‘E):g—;ﬁl"r)*&r S N .

Colwmns gxpecteot paroffs . l§ I{r‘lg = ’g.%gjt §U’f) f

= Hhiee Nash equuili bra, , 1
L R T+ & (1)
re(t
T/10,-31]8,0 best reply | (T:R) owol
s o f (-tT*LH)B L)
B|08 |22 e

Modlifieol Example



Dynamic Games

From stiwtegic fow o Extensive Form
o dhrecteol Tree groph (nooles , directeol edget . no ycles)
o, Plawper asignec to each. nadss, activn comesponding o edgps
pasyoff wiitfen at terminal nodes
“ o knows what” indicateol Wae information Sets

Backwaro Inductton => Subgame = Perfect Couilibium ($PE)

Firm 1 (entrant) decides whether to

enter (action E) or not (action N) E N

Mot EA N
Observing this, firm 2 (incumbent) ©02) - DPh - ‘

decides whether to fight (action F) conh huation P'M (1,0) 0,2)
or acquiesce (A) },»q. E i

Payoffs displayed at terminal nodes Ly A0 -F) ¢ 61 r ‘d( l:lb elgmﬁow

in the order (firm 1, firm 2)

1. Badkwarel Indiuchvn can be nsed in euery Sequantiol - moves
game with perfect Information (= players obzermng all eaurlior moves)

2. Subgame~ Peifect Equilibrum (SPB)
> is Nash Bguilibrium (SPNE)

3. SPE indncel Nash equilibrium in every continuativn (subgame) of
the perfect - information . Sequential - moves dame .

F A Best-reply payoffs underlined
N| 02|02
E[1L1]L0 Two pure Nash: (N,F) and (E,A)

Mixed: (N,pF+(1 — p)A) with p > 3
Firm 1 (first payoff)

(use the “recipe” to find them all)
chooses row

Among all Nash equilibria only (E,A) is subgame-perfect

SPE rules ont Nash equilibria sustainzol by nen- credible Hhreats
> SPNE (Vi backwardl inductivn) js a mpre robust predietion Haun
Nowh equalibrium in dynamic- games



4 gimuitancons moves in the extansive -ﬁnm

Battle of B S
theSexes B | 5,322
S100]3,5
@ P1 wants to go to beach (B) b, b’ g

@ P2 wants to go to store (S) (5,3 (22 (0,0 (35)

(sequontiol BoS. P fE)

63 (22) 00 @35 @ both wish to meet

Dashed line between P2’s decision nodes indicates P2 cannot directly
observe which node he is at; these nodes form an information set

@ the same action must be taken at all nodes within an information \ fW\PU"fm l‘ V\-FDTW\G»"'I’W\

set because the player cannot observe which node he or she is at

Inmperfect Comp@fiﬁovx n an IV\O‘M9M
Cownnot (1€38) Game
fgmg %%Ci% , price P=1-¢i-¢s
= | 1 X () DT Given @y (2>) -
g R i i Ar e o e L
——— (Cowtnot - Nash eguilibrium

Shackedberg Gawe ( Seguomtiol quantity sekfing)
v 1 picks 4 fret (fived-mover) .
-fmmx (¢ P = (l-ﬁ%\ -’—,—@)%‘ > 34 =, zgi”z pe
The £t mower i stricty better off in guantity - cetting oluopoly

o7}
"\ ¢ Best reply funchons
ai(@) =31-q) ai(q2) = 3(1 - q2)
Cownot

/ (1 H P2)q1 = 3 m @)q = %
K flr‘M 1~5 léﬂpmf"T % | \\k/ %’]Wb(fg %W
Nl) =3(1-a) \qu) =3(1-q)

/ % q1 ”f‘ % A a1




Repeated Games

'Fn‘ve Pivates Puzzle

Five pirates, A, B, C, D and E, find 100 gold coins. They take turns, in alphabetical order, to
propose a division of the loot.

All pirates that have not been eliminated have to vote for or against the current proposal. If
the proposal gets weak majority then the coins are distributed accordingly and the game
ends. If it is voted down (strictly) then the proposer is eliminated (has to “walk the plank”), and
the next pirate makes a proposal. Each pirate’s main goal is not to be eliminated; conditional
on that, he or she maximizes the number of gold coins received. All else equal, each pirate
prefers to eliminate as many other pirates as possible.

Q‘Dlv\;‘h\OY\ :  Start at the end of the game when only {D, E} remain: D offers 0 to E,
E votes against but D votes for the proposal, hence {100, 0} passes

Knowing this, when {C, D, E} remain, it is sufficient for C to offer 1
coin to E to get E’s vote, hence C offers {99, 0, 1} which is accepted

When {B, C, D, E} remain B just needs one vote: offers 1 coin to D
(who would get 0 in the continuation) and {99, 0, 1, 0} is accepted

At the start of the game A needs two additional votes (C and E are
cheapest): hence A offers {98, 0, 1, 0, 1}, it passes, game ends

Centipede ¢ Bob Rosenthal 19811

players 1 and 2 have £1 each, player 1 gets to move first
a player can either Stop (ending the game) or Pass (decreasing her own payoff by £1, increasing
the other’s by £2, and letting the other move next), each can Pass a fixed number of times (say, 3)

1 Pass 2 Pass 1 Pass 2 Pass 1 Pass 2 Pass (4,4)

(1,1) 0,3 (2,2) (1,4) (3,3) (2,5)



Finite  Repeitition
Prsonens Dilemma

Prisoner’s Dilemma played exactly once

poweto ~ donwinates
\ C D @ D is strictly dominant for each player
cl1,1]-1,2 @ Hence (D,D) is the unique (and strict)
D|[2-1]00 Nash equilibrium of the stage game

¢ . . - . .
sivict Nagh ew“bn“mo (C,C) strictly l?aret(.) doml.n'ate.s it but
cannot be attained in equilibrium

wnigue SPE - plaw D in ey perivd

= finifely repeaiteol

pnzvm’s oilemma

Butolomnce by Rehert Axedrod (polthcal siomtzt, 198)) .

First tournament: each program paired with all others to play 200 iterations of the PD;

the highest total cumulative score wins

The winner was “TIT FOR TAT” submitted by Anatol Rapoport (psychologist,
1911-2007), which played C in the first game against a new opponent, then played the

opponent’s most recent move

Axelrod published the results, then called another tournament; the winner was again

“TIT FOR TAT”
Axelrod’s conclusions: be nice but provocable, fair, and not tricky

Hawk-Dove

Hawk-Dove One-shot Hawk-Dove (not PD!)
H D e (H,D) and (D,H) both Nash
II_DI _;: ; % g e (D,D) yields higher total payoff but

unattainable for rational players

Play it exactly T + 2 times and consider the following “social norm”

@ each should play D in all periods t = 1,..., T as long as nobody
has deviated and then (H, D) and (D, H) in the final two periods

@ if anyone deviates the other plays H in all subsequent periods
and the deviator (rationally) plays D against that

This is SPE in the finitely-repeated Hawk-Dove game!



Infinite Repetition
Thootem. - in infinitely ~ tepeated Prizones’s Dilemma. the outcome™(C.C)
forewer” can be sustwined in SPE for & sufficiently close to 1.
P Wﬂfi @ Consider the strategy “play C in the first period then C as long as
the outcome has been (C,C), otherwise switch to D forever” N

' qqer
@ If anyone deviates from C then mutual “D forever” is of course 6“ m 49

Nash equilibrium in the continuation (subgame) for any J v/ (N osh | 9‘. Ve E‘ ion)
- . threstentng with
@ Check deviation from C: playing D pays 2 once then 0 forever, ., _ ot \Jach,
whereas staying on-path pays 1 forever; the latter is better iff {ow

2<1+(5+(52+...:ﬁ<:>(5> %,i.e.,truefor&closetol/

Bertramdl Game (tadt collusion in eligopoly)

Assumptions - 1. N fitws , o homogeneous produck. price. competrtion
5. WIRThevet charges the [swest phice takes emh market
3. oonslant wit cost ¢
4. Pnonopoly price pM, wonepoly profit >0
Bquilibrium jn one-ghot Bertand game - p*=C (wmgue Nach)
—— wike Cournals quauntity pompetihon modet. Bertroamd. o
tHat wmﬁh‘h}m $Mwloi%'w price ogwn to He marginal %d

W With st o frmms
(Quountity Competitivn - ¢.g- airplane ACtUrg , strict capacity
f Prce Co%‘hbh: 0:g- w;yﬁ\ggd [d /Wsl‘z\,ﬂ soles 86;1&@

Infindtely - repectied Berfranol. Moclel :
ewstoun cogperativn CP™)  Hueat _ revert to inal-Cost
in SP5 inthe long run 7 preing forewer If one olowinites
>IN g™ & §» N

(more firms. more impationt Fims , findl it honderto cofludle)



Weeks 1
Coctic Ciames of Complete Info

Formalizodion of & game
f Domunamce
Rattonalizabiltty
Nagh Bauilibriwm (pure, miXeol, Covehmaous achbns)

Conelateol. Bquuilibrinm



Formadization of & Game

For o stactie gome of complete information ( sthategic ™ form game)
sotof Poawers N= {13, NY, N €fimity who play cimoultomneously
get of activns owailable 1o each plagjer , Ai, v €N
chodegy - & complete Coontingentt) plan which <pecifioe how the player
il act In eveny possible distinguishable cittumstance, ai
Mixeol tratfeqry  olis o probability distibwhvn over Actibns e Ai.
‘noliwamal s | preferences of each achbon . Wi (0 Q-1), Ori € Tlheif
o WDF{ P f (d? ar)?‘=(a,(-ﬁ>, %\,diﬂ,“'ﬂ)/\j;‘
matrix form (norwal form)

anol eguivalemt extencive form represenfation

Domanamce

Stet  dominamce - expected payoffs
VO, o', WS, A1) > Vil Al G7) « shrategy i sirictly dominateol
v Qi € A strichy dominoctesl by Qi - ¢tracteay du stricty olominowtt

@ No strategy is dominated by another pure stragy.

‘ / (,[)) Cc ([’P) r @ However, strategy r looks ‘weak’.
T 1 6 2 0 1 1 @ Consider a mixture of two ‘strong’ strategies:
= =) ) s=pxl+(1-p)xc.
B O O 1 6 3 1 @ |If player 1 plays T, then s gives a higher payoff than r if
) &
v(T,s)=6p+0>w(T,r)=1 = p>1/6.
~ Giricthy olomwinated. by . i : . :
. \ player 1 plays B, then s gives a higher payoff than r if
sthafeqy " = pL4LPIC Wt PETH.6)

w(B,s) =0+6(1—p)>w(B,r)=1 = p<5/6.

Tteractive Bimination of Stricy Deminateol Crategies (1ESDS)
(an baced on every player e amol ate know fo be. racional )

a b ¢ d
| 40 22 2.4 |la b c d | a b ¢

A |55 4
asp A[55 40 22 2,4 ad A|55 40 22
g 2'; g? g’i g‘f Blo,4 6,6 45 0,53 B|0,4 6,6 45
Av-Bigely cl6,2 51 34 01 cl6,2 51 3,4
‘ a b c ‘ b c ‘ b & b
A TB10,4 6,6 45 <% B|66 45 == BT66 45%B|66
cl62 51 3,4 cl51 3,4 Bod 5 '



TESPS = Dominance Solvable

. Lot 5iR) be & cet of mixed stradfeqios with Support R. eg. ZIfACH=FpA+(IC)
2. For all plowgers 1, olefine R = Ai < set of pwie sirategies

3. Lot RFC R be agubset of undomaraifed actions, .., Such that for any di€ R, Hure is
0o Such e 5 (R Hhat widk, a0 > WA &) for all Ari e R

—— R is aset of pwe ghtategies which are not strictly dominatect by anothar (mixeot)
gtrategy from Rf™ ‘
4. The ¢et of pure sitateqios which Survive the Heraded ediminartivn of ctrictly dommoifed
chrategies i¢ denoted R = NRE
5. 18 Ri™is gingleton, tham the gawe s called dominamee Soluable

. 3 \ 1
property - Infinit qames the oroler of eliminadion deesn't matier
In games with infinite action spaces the order-independence of IESDS solution is
not guaranteed unless the strategy space is compact and payoff functions are
continuous, see Dufwenberg and Stegeman (Econometrica, 2002).

Bk = BE Ak
A Cowrnat Oligopoly Game
Plowers = 2 firms
Actions . Ai=To,n), firm chovses ¢i eAi
Powjoff = Aix A = IR, Tii (4169 = f Gil-4i-41 i 91gs2)
0 /.f zl-fg)>]
@ By maximising gi(1 — gi — g—i) we get a reaction function of firm i is g; = =
© Denote R* = (¢*,7*), ¢° =0,3° = 1.

© Then, given the reaction function, g*

> -

(1-0)/2=1/2.

@ Then, given the reaction function, gz =(1-1/2)/2=1/4.
© Then, given the reaction function, g° = (1 — 1/4)/2 = 3/8.
@ Note that (either upper or lower) bound on step k is given by

i gt ) 1 1 o=t
= S T T TR
q 2 2 T il

@ By taking the limit kK — o

© Thus, Cournot Duopoly is dominance solvable.

Tietive Eliminatton of Weakly Dominated Srategies (15WDS)
VO, I, Vil B) » Vil Qi G) . ghrotegy Ai weakly dowinated



L M R L M -
T|L,1 LI 0,0 25T (1,1 1,1 = S
B[00 1,2 1,2 B|o0,0 1,2 *

L M R M R
T|1,1 1,1 0,0 X577 [1,1 0,0 =T 5 1M2 1R2
B|o0,0 1,2 1,2 B|l12 1,2 et s

. ‘He order-of eliminahion matter
me: ‘the Nash giuh‘brfa com be_lost dimvng TEWDS

X GOMmon hwwledza of mﬁbnad@ ( Shricker)

Rationalizability Bifimmguge = imoe

—— bedief in esthjomes being rsthivral
Pr(0-) . probobility plawjer i pute on d-i, ml‘n‘ka_gmgj‘ga-nw “bedief”

We call player i tachiomal if he maxmizes e expected pauff given Pit)

Pefinition - Plagers action O: is called rafionadizable if it is a best
respunée. to ome mix i“‘“ opporents ratmadizable achvns .
(Player’ 3's bekiof of i)
Definition
The action a; of player i is rationalizable if for each player j there exists a set Z; C A; such that
Qacz

©@ for every player j every action aj € Z; maximizes the expected payoff of player j given their belief
pj that assigns a positive probability only to action profiles in Z_;.

Ino(cpe,no(evd V8 Coneloded B@Mefs

R L L

Uls, 0,0 Ul 444 .0 Ul oo,

D |o, 0,0 D |0,0,0 D | 0,0,
X

0,
) 4,4,4
X is not rationalizable if we allow for product beliefs:
@ Let Pr(U) = p, Pr(L) = q, the expected payoff from X is 4pq + 4(1 — p)(1 — q).
@ X is not dominated by W and Y if and only if
4pg+4(1 - p)(1—q) > max{8pq,8(1-p)(1—q)} = p=g=1/2.

expected paﬁo?{ from X

@ Then given p = g = 1/2 we get v3(X) =2 < 3 = v3(Z), thus X is dominated by Z.
WA

o

]

O |~

S{ o
»~ ol

R
0, 0,0,0
,0 0,0, , 88,8

)

< o

X is rationalizable if we allow for correltated beliefs:
@ Let Pr(U,L) = p’, Pr(D,R) = q', the expected payoff from X is 4p’ + 4q’.
@ X is not dominated by W and Y if and only if 4p’ +4q' > max{8p’,8¢'} = p'=q =1/2.
@ Then given p' = ¢’ = 1/2 we get v3(X) = 4 > 3 = v3(Z), thus X is not dominated.



In finite games the set of correlatedly rationalizable actions coincides with the set of actions
surviving the iterated elimination of strictly dominated strategies.

In two player finite games there is no need to think about correlations: all actions surviving
IESDS are rationalizable and the other way around.

How reasonable it is to allow for correlated beliefs? Aumann (Econometrica, 1987) argues:
“In games with more than two players, correlation may express the fact that what 3, say,
thinks that 1 will do may depend on what he thinks 2 will do. This has no connection with
any overt or even covert collusion between 1 and 2; they may be acting entirely
independently. Thus it may be common knowledge that both 1 and 2 went to business
school, or perhaps to the same business school; but 3 may not know what is taught there.
In that case 3 would think it quite likely that they would take similar actions, without being
able to guess what those actions might be.”



Nash Equilibrium

Definition

A NE (in pure strategies) is an action profile a* = {ai,...,an} such that for any action a; of any
player i

ui(a") > ui(ai,a”;)

NE. mobooly wawts 1o olevinte %ven othors play the Same Strategios
Dominance : nobody wants 1o olevisite regardlest of vthers strategies

Definition
The best response correspondence B; of player i is defined as

B;(a_;) = {a,‘ €A : uf(a;.a_;) > u;(a,{.a_,-) \7’2; = A,‘}

A set of Tnleresections’ of BR tonespondances gives afull net of NE.
poofs &% in o NE iff. Vi) U7€ B ()

xanple RevieteoL « Crumot, Berfranal <4 £

Definition
A strategy profile o* is a NE (in mixed strategies) if for any strategy «; of player i

vilag, ;) > vi(ai, ;)

Mixed NE amal Indifference
The mixed. gtrategy profile o* is NE iff. for each player i

f oLi AKIGNS Zey0 gwbab\‘h‘tg 1o all pure activns i | Vi(Qa, o) < Vitsli, o)
thete e 10 activns Qi for- which Vil &, o) > Vileli®, ol-i)

Problem (O’Neill’s Card Game)

Ace King Queen Jack

Ace 1,0 0,1 0,1 0,1

King 0,1 0,1 1,0 150
Queen 0,1 1,0 0,1 1L.(0)
Jack (0,1l 1,0 1L0) 0,1

Label the probability that player 1 plays his pure actions p1, p2, p3 and ps. Similarly, for player 2, label these
41,42, 93 and qs.

Note, that any playable action should lead to the same expected payoff!

EUi (A) = aq

o q =2/5
EUi (K) = g3 +

EUs (K) = g3 + as Gru=@+ta=ag=q @ =1/5
EL(Q)=q+aqa = - = = =

- - R+ B=@G+u=>q0=q q3=1/5
Ehh())=q+qs3 9 =1/5
>qi=1



Nash Equilibrium: Discussion

@ General considerations:

o unlike rationalizability, Nash equilibrium implies that player’s beliefs are correct in equilibrium

e common knowledge of rationality does not imply Nash equlibrium

@ one of possible solutions is to view Nash equilibrium as a stability concept: none of the
players wants to deviate, but we do not ask a question why a specific action profile is chosen
in the fist place

@ no predictions on which equilibrium will be played in a game with multiple equilibria (recall
Battle of Sexes)

@ see link to evolutionary play later in this course.

@ Mixed strategy equilibrium:

o especially problematic, as players do not have any incentives to randomize in a specific way
over the actions in the support of mixed strategies, since all actions deliver exactly the same
expected payoff

o stability interpretation: stable social configuration of actions

e Aumann and A. Brandenburger (1995) interpret a mixed strategy of player i as payer j's
belief about player i play

e we will discuss purification later in this course.

Mixed NG With contimums Actions
price. dizpersion
heterogemneous informativn > discovitinaudty in olomanol
firme’ mixed siratteqy equilibrium
Two firms produce a homogeneous good at marginal production costs c.
There is a unit mass of consumers. Each consumer has valuation v > ¢ for the good,
which is the same for all consumers.
Fraction A of consumers are informed. These consumers know both the prices and buy at
the lowest price. If the prices are equal, they split evenly.

Fraction 1 — A of consumers are uninformed, they just buy the good at the closest store.
We assume that they split equally across the firms.

Mixed STroteqy of firm 7 olefied by disiribuiion Fipy= Pr C pricezp)
cymmertic camolidette equilibrium - Fip)

Claim 1. Support of F(p) is a convex set. If Claim 2. F(p) is continuous. If there is an
there is a gap [a, b] in the support, then atom at po, then 7(po — &) > m(po + &) = there
m(a) < w(b — ¢) for sufficiently small . must be a gap above py.

F F

Ifrmmmmmm e g 1

Y%

- e e
T



the & [ comeL
It simar, e
f nformecl oustomers . if it changest the lowest price - ALi-Feprl(p-c)
> TIp) = AL Fplep-0) + 22 0p-0)
wpper bond: p=v, T=-12-v-)
golutton (constount expecteol pmﬁ‘fs for amy pd- TTpy=Tr

S5 Ay p o Uuga
SFp =B FE) L P = URWAC (st Fipy=o)

Conelated Equilibrium
Definition
A correlated equilibrium of a strategic game consists of:
@ a finite state ) and a probability measure pu over this space
@ for each player i a partition P;(w)
® for each player i a strategy oi : Q — A; with oi(w) = oi(w") whenever w,w’ € P; with P; € P;
such that for all i and w

Y ww IPi(@)ui(oi(w), o-i(w) 2 Y uo|Pi(w))ui(si(w), 0-i(w))

w’'eN w'eN

Suppose that the state space is generated by a through of the dice Q = {1, 2, 3, 4, 5, 6}.
Partitions: P1 = ({1, 2, 3}, {4, 5, 6}), P2 = ({1, 3, 5}, {2, 4, 6})
Players condition their action on their partition:

whether w is smaller than 4 or not for player 1

whether w is odd or even for player 2

> 1
3 Ls RS |L R
s ean 2T Uly x
1L D|7,2 0,0 D|z O

This game has two pure strategy Nash Equilibria: (D, L) and (U, R).

Alternating between these two equilibria delivers the average payoff of 4% and a mixed strategy
equilibrium with expected payoff 4%. Is there a correlated equilibrium with higher payoffs?

Let Q = {x,y, z}, let P1 = ({x,y},{z}) and P> = ({x},{y, z}) with p(x) = pu(y) = n(z) = 1/3.
Let v b R

o 1({x,y}) = U and o1({z}) =

@ 0u({x}) = R and 02({y,z}) = L.
Deviation incentives:

o If player 1 observes {x,y} then vi(U) = 36 + 32 > 17 = v (D).

@ If player 1 observes {z} then vi(D) =7 > 6 = vi(V). N

@ Expected payoff is %4 + %7 =315, - l'?/\)Q/[a"hVT\ ~an‘/1 F,C

in machaniem degign



Supplement

don't swrvive TESDS| IDSDS . not a best recponse To auy belief

Rectivnolizable (RAT) : best responce to Some beliof
2upport by rectionalizoble stroifegies

nh 9-pl ame or ns2
PTZ'Y,;'!&YJ.T% gomes

covrela
T= Al =Q
@ P'A'T v RA UM LESDS

LESDS “conelode. our olecikins”
= () oppnests Imurge fifo a
Super OpPONLATS agoinet you
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Supplement

Problem 2. Two ‘oligarchs’, A and B have a dispute over an asset of value X. Although
both oligarchs now reside in city L, they decided to settle their dispute in court in city M,
where they originally made their money. The reason is that the legal system in city M is

simple and transparent: both contestants provide the judge with the ‘evidence’, which
takes form of a briefcase with cash. The judge keeps the evidence from both contestants
and decides the case in favour of the one who provided more evidence. If both
contestants provided equal amount of evidence the judge flips a fair coin to make a
decision. Assume that oligarchs submit their briefcases simultaneously and any
contribution y € R+ can be put in the envelope.

1. Derive the best response of oligarch A to oligarch’s B contribution.

2. Using your answer to part (1) show that there is no pure strategy equilibrium.

3. Prove that there is no contribution value played with a positive probability (Hint:
consider small upward deviations).

4. Using your answer to (3), or otherwise, show if F(y) is a symmetric mixed strategy

equilibrium distribution then it does not have gaps in its support.
5. Argue that the lowest contribution in the support of F(y) must be equal to zero.

6. Derive the equilibrium strategy of the oligarchs.

1. Assume A puz Ya. B puls Ye n the enue{,e?e
UAHAsYR) = ¢ X=Ya . If Yr>Yr
3-Yr if Ya<Ys
“Y o iF W< Yo

Best Response Bace)< fg’ﬁlf:;
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0 No pure Nogh Equilibrium.
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3. P (FF) canet he anm egMI%bn‘m whom F [ooks [Tke Hu .
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Conedated Eguilibrivm

LB “four traffe (gt
T % | Y S\t Kyt34W =1
> df =5

Bl 2 | w < Pld T K 0ry

Con<lotteol Bqaulibrivim

Mikeol e%m,\'ll‘ bHiuwm provole o reasdnable
L R ot
wired-strocreqy AE.

T | b4 |pu-p o =2

t-p>
B ((’P)% U,I;)

But Mixesl NE coulol ke weirdl:

A & , N
miked. NE:
Al xx | 0,0 L X
(X1 A+ Xe1 B
Bl oo (o1
(X>>1)

Remarks: NB omits | diesht proviele
f 1. sdection among NEe
5. ROSOMNG process | dyhamiz Tiung



Weeks 2 .
Coctic Crames Of Imperfect Info

Bowes =~ Nach Equilibri
Pwrification E%Wl e
Global games



Terminology

oteate Games of Inwomplete Informativn ( Bamesiom Games):
o U;& y Wt)l\flmmfalgg fnformﬁz-lbn about gt planery’
/E etencus anol chotocterstics .

Osbom - imperfect /n]‘bwm?g; " o
Hargomyd - games of jnco informacivn = games imwa‘
a ?nf?)wmj»n m M&Tﬁjﬁllowt‘@ 7@%‘}'\% :
natwe diows a tipe for each. plower
nactwee teveads To ench plaser WS or her Type only
plarere gimouttaneously chovse strotegues
vtype -olopendent ) payefs are tealized.
— Thws gamas of incomplete informechivn can be representeol og
3a,mlls of Confiléfe m 1‘% l’rq%vy'\maﬁ\mzm’r the plawere’ fype..

Definition
A game of incomplete information consists of
@ a set of players N;
@ a set of states or types Q; State WED
@ a set of actions for each player A;;
@ a set of signals and a signal function for each player; SPOL(Lﬂf .Sl‘gIM-IS'- S; 0-8§
@ a belief associated to each signal received by each player; siawx(s + PN'UT destr bMTWV\'
- postenyr belief

@ a Bernoulli payoff function over pairs of actions and states (a,w).

Consider a version BoS game, where one of the players can be either cooperative or not, another one is
always cooperative:

‘ b s | b s
B|21 0,0 B[0,1 20
sloo 1.2 S|1,0 0,2
Cooperative Pl.1 Non— Cooperative Pl.1

Cooperative gM% SPOLC& fOT

P“"‘Wi‘ ,,;5,%, BS, 8B, 833
glgmal "Me . copperottive
8ignou Mive Moncooperadive

(2,1) (0,0) (0,0) (1,2) (0,1) (2,0) (1,0) (0,2) P]Wﬁ(’fa: f b S))‘ .
(only pwre strategios mestioned)




BuS: Mote Complicaitecl Signals
» PUmg | Conperaitive) = 4 RS
Buppe };(mmlr\lot\lf?oop,\{: ﬁvﬁ % s
proT belief P(Cooparartive) =P
= Player 5 nedle o updacte his beliefe about the dizrbvction of plamer 1 typer condiibnal
@nmﬁ;lgwd

I PrOMenMe)  _ Prime|me) Prome ) _ Pg:
Primelme) = prame) Pr(W\r,]Mo)PI'CMa)"’Pr(Mr,ImN,)PrUV\m_ = Pt CepIU-gs)

> ond. §7YWI.IOU({4{| :FOT Prime | mye)
Plower 1 alsv needs o form beliefe abowt the Type of plamer 2.
PramMSIme) =4, Primel mie) = 1-4»

Bowyes - Nash Equilibrivm

Definition
A Nash equilibrium of a Bayesian game (Bayes-Nash equilibrium) is a Nash equilibrium of the strategic
game defined as follows:

@ Players: Set of all pairs (i,s;), where i is a player of Bayesian game, and s; is a signal that player
i can receive.

@ Actions: Set of actions of player (i,s;) is a set of actions of player i in the Bayesian game.

@ Payoffs: Bernoully playoff function of player (i, s;):
e :/ anal (o) R (%)
Jwea

where a_i(w) is an action profile of all other players given the signals they might get in state w:

aj(J, 5(w))-
Brample - BoS with PrcCogperntive) = p= £
« pwre éirafeqy BNE @) yixed eroteqpy BNE
b S b s | b® s
B |21 0,0 B 0,1 20
BBl 1L 1o s|oo 12 5‘1.0 0.2

BS| 15,08 0,1

SB| o5 12 Suppise T'md)= B, VM= 9B -
e lowjer 2 iU fferent - Vath) = Ix1+3d) 5 ds3

E5| 050 052 F ft Val&)= _-;_(l’cl)xzj

(8B $) 5 wmgue BNE plaur 1 inifetent \\%@ :éu@:b g=2

(checkthe cov &rhwlma doesnt Wamt to oot
Vel) = i 3 Ve(®) =

> f (3%%&) -%b’riﬂ




Exomples
I S’wing Voters Curse

B . ingtate A, 1 betterthan 2,
fé?ﬂﬁd&&m efmigw A8 /n ¢hate B, lbjzﬂuﬁw/tl
2 voters . w=| (best candidafe wins) . U=0 (WOrsH), U= (re)
f citizen 1. informed of the Stofe of the W
Citizen2: pLAY=0-3. ptB)=0-|

Fomalizafion : pougoffe

| < Citizen 1 omd 2

State A State B

gtofes: (A B3 0 1 2 0 1 2
ACAons - Vote oT 1>, olp ywt vote . £1,2,03 0[%3 1L 00 | 0[3f 00 1L
signale: ¢ differeud in/r or B 2|55 BT 85 | 2|21 31 it
. olwonyt He Same Sz REESE
boliefs : fmmP;rm‘r Wih gignal
puAI=0.9. pB)=0.
Best Rogponse
Phaeils Player 2 plays ] 0 1 )

Player's 1 best response | (1,2) (0,2)or (1,2) (1,0)or (1,2)

Player 1 | (0,2) (1,0) (1.2) E?,M‘[(bﬁa,, (th2),0), (19:2),1)
0 055 095 1

1 0.95 0.9 095
2 0.1 0.55 0.55

Player 2:

2. BoS 2x2. problem

i T i For each player denote WX a strategy “play
5 s N 5 s W if | am y type and play X if | am n type”.
2B 2,100 » B [20]0,2
55 0,0 1,2 35 0,1 1,0 w/Pl2| BB BS SB SS
State yy State yn THPQ' A g % 1%2 1%2 (1)
2 23
- 1 2 m/Pl2| BB BS SB SS
B g 1: my B s TBP?_ - B 0 1 1 2
1B 0,1[2,0 1 B [0,0]2,2 o 1 12 12 0
S 10|02 35 1,1 00
State 1y State nn BR:L PIaye'r 2 plays éB\ BS SB ES\
Player's 1 BR @ BB BB @

. Player 1 plays BB
Swlam’ BR'>: Play);r's 2pB|§ Q BS,SS .
> twi @%!M'J,fbr\uaa (BB, BS), (8B, 8%)




3. Cowwnwot

Consider a Cournout Oligopoly model with the demand function p =1 - g1 — g2. Suppose
firm one has zero production costs, while firm two has costs either 0 (with probability a) or ¢
€ (0, 2/(4 - a)). Firm two knows its type, firm one does not know it. Find BNE of the game.
e
Firm 1+ Th= [RUI- = @) + =0 o] 1 = U= 45) ¢ > Gi= =t
-FIT‘WIJ\ f Low st Thi= U’% %Jl,)%;], > %u,— _%l_
High 05t T = (1-§1- o> o — oy S o= —2C
N wlure %z dg:;,'\' U"ol)%;ﬂ
. . _ A=l _ 2-U-dc
Coluton %H‘-L:)C ) %117 A , Gouc= A

Continuwm of Types

I Bertromol Competifion
AJ )
Getting ouol Lhroteqies
Suppose that there is a single buyer who is willing to pay up to 1 pound for a product. There are
two sellers, each seller has production cost ci, which is independently uniformly distributed on

[0, 1]. Sellers simultaneously make their offers and the buyer buys at the lowest price or
randomly chooses the seller if the prices are equal. Find the BNE of the game.

cellert linear Inckeasing pricing girotteguy = pi = i+ @i i
Ti=Lpi-Ci): Pr )<Pva) LPi-C)  Pr(pi<d-i+ 8- CH)

= (Pi-Ci)- pr( B <o) = (pi- m(1~—5r°“)
%T% =p > ‘P)t 2&"'2(&-1‘\'3—() > 8j= 2..011

tws: Pi=3Citz

Selerl arbitrowy ihckeasing privng strateqy pic).
Dewtatton: prtend Fo be o different Type f"i’{ﬂm )
T (Zs50)=[prey-c): Prip(e) < PLC-)
= [pe)-c1x PriCe< C) = [pe)-c10-C)
% = PO -pler+C=0

the best possible olevicchvy is 1o The fims frue Ty (le., T=0):
PULIU-C) —PLEY+C =0



2. Denble Auction
Voduartion for the goool.
f bwyer - Vo ~ V(0)1]
seller - Ve~V To, 1]
Both bwyer owel seller simmltameoudy anmowne thedr prites Py omdl Ps.
If Po#Ps. Hhe toele takes Plau at apm‘ce LPotPe) 2.
poupffe (when Po<ps: D phorwine) .
fobLPb,Ps,\/b): Vp- Pethe
TeCPo P, Voy = Eotbs _ys

Swppose Huotl the Seller plawgs o [ineaur strodeay - Petve) = d+ Qs
T = Priimade) - (Vb - expecteol price)

w prifrowle) = PripozPe) = pr(Pozd+@Vs) = Pr (Vs < -Ebé—d) = -P—bé—d

W) Sine PS ~ UL, DU’Q.] ;

eApecteol prce = BeTBUSIFECPD) - 3 (D S (Pptoy)
> ThotPo. Pe, Vb) = 2 (Pp-ad(4Vb-3Pb—dl)
4

Foc: Po=3Vbt 34

Suppose Hhat the bwyer plouys o linear sitoifeqy : Pp= ¢+ 8Vb
Tls = Prifrace) - (expecteol price = Vs) .

= 25 Lt §-Po YU 3ps+HS-4V5)
> = 3Vet3(0HS)

i Po=1513 Vb
Ps =7 +3Vs
trowle ocums whan Po>Pe 2 Vb2 Vst #

Actually, the binear equilibriwm i¢ the
most aﬁa‘u‘wa” one. '

(Jest efficaumt for other epuilibrian:)

Chavte $ome X EDDIY,

= 9( lll Vh>/9( ) = K’ "f VséK
pe fD (¥ Ve X s fl, ,'5;\/5,9(

> |
X=Xt3 = -3 HF

1v



3 Aplerse Ledechyn

There is an asset (e.g. a firm) potentially available for sale.

The seller knows the value of the asset under its management.

The buyer does not know the value of the asset and thinks that its value is uniformly
distributed on [0, 100].

The buyer believes that it has superior managing skills and under its management the value
of the asset will go up by 50%.

The buyer proposes the price p for the asset, the seller can either accept or reject. If the
offer is accepted, then the asset changes the ownership.

Formalization
@ Players: the buyer and the seller.
States: v € [0,100].
Actions: Buyer: p € Ry; seller: {a,r}.

°

°

@ Signals: the seller gets a perfect signal s = v.

@ Beliefs: Buyer has a uniform belief with support [0, 100].
°

Payoffs: 0 and v if the offer is rejected, %v — p and p if the offer is accepted.

The sehler pepls the offer whonewer pv.
The expected. paygof} ofﬁwbwe,f 5 oy
T = prip>V)- (SEWIpPI-PY = =

= L,WW(Q h@eﬂ%ymu;“p:o



Purificoction
Brample: morsy BoS

b % o
S| oo 1,2 (B.b). (S,2), (3B+33.3btT9)
pm“ugbw( gome . o '
S g amd § oue plowpers’ type (extro p From
Blatg, ) €% thair fmowﬁa%\onﬁﬁpﬁm& info%aﬁw
el 0,0 1,246 2.6~ ULl X] Una(zpmo(zm)

Suppose plower 2 follows puke $‘}m‘|'e%
f play s 1f §> 8"
play b 1€ & <8
Best Rosponse of plowger 1. ]
A (;mé,)-?{i +%(l—‘57) =25x—+£
vits)= 101-50) ]
VB2 WS) B €3 |- 3= ¢

N *
> ploy B lf £v¢ . puse siategy. epaci, i ithon
> e*:l_.%;g(- -} sj‘zs*am f ‘ A }V\Mmﬁ\??’y
g% = -3¢ Inixed gitateqy- imsolve rardomizorton

Unoler pure éﬂaf% BNG, PriP)= ,,%. _2+X

3+X
Lim X _ 2

=3

x20 2tX - >

T e, He limmt point of outcomes of BNVE ew’lfbn’m (s
mixeol Noash BWlibnmm of W\poﬁ'mrbao{ game.
Proposition (Harsanyi purification)

The probability distributions over strategies induced by the pure (Bayesian Nash) equilibria of the
perturbed game converge to the distribution of the (mixed Nash) equilibrium of the unperturbed game.



Global Games
Corlsoon , yam Damme ( Guomometica, 13§3)

Definition: A game iy ramolomby drawon from o clase of games
(global game), each plamer gefs G moimy sighal sbowt
wivith gome 15 plowjeol .
—A the e randomly draon conolitivnal en
-ﬁzﬁwma({fgamﬂpm, Types hewmmﬁg conedotest

Example -
Two investors simultaneously decide on whether they want to participate in a project or not:
1 participation costs for each investor is c;

2 the project succeeds only when both investors decide to invest;
3 if the project succeeds it brings v to each investor.

| i n (%) the. pourticipation costs e whkivoLon

L |veve -co ex awte amol el planers gets a.
N | 0.-C 0,0 wW‘h’amLM fna(zpeiwwm‘r s,% obont 1T,
Anolys1s -

1. Complete Information
G20 : WMW NE (1,1)
fovv: whi NE (N)n) e e, Co e
Ce o,V three equalibrion (1), (M), (VL TN, Vit
2. Conelavfeol Types '
V=10, CE§=2,, - 1112) . wpitorm diztribvhn
Ziqmal - f one. playur lewns true valwe t=c. ‘
anethr plager gefs +6 fc o1y ewll}j Jilaly
(‘Imm ozt b on (consihvnal on ¢ ):
th| ¢ ct1 Swppuse plawr L gefs Sigmal he Dinld,

_ 0 = ¢, wpoF
o #o ﬁ g k7 ftu>W-P‘%P\+ > B(clt)=W
al s oo 3 T, W F

Tolth = fi‘,;)} '. %Ei (T €f-2,1202) Simdlaurly)

See paxt . coneladed wncertaunty oelivers a wni
P pno(A‘Oh\?n for a!ww:;mall values ofc. e



13 > N
_ :t:X 3 %:7* j lf ti1210, Ble|™) »lo '
ﬁ* g )x > wot J‘nA}%ﬁhq olominates
1 - N —> WD= Pr@ssilhelo)xv- Bl
°7 Xk N ¢ [i- prehan h=19) Xlo~l0 <0
8 —| X X s N > choose N
o T il VD= Prlai=LIH=t) xv- Blelti)
6 — Xk X — N L . _ _L/.__
< [l P =t vt = 20
5 Xk X 4277
3: x j ; i ;, if both types inwest Jor Fi=1-1
2 — X+ g X ./ Wi = Pl‘f.T-| 'HT-T)TV"E(C"‘?\‘) v
1 X kX s > prit-i=tmltistxv—t=3-C
0—| X kX -1 %V\m:Pr[d;‘vil‘l'\w)x\/’[?(fx‘lh) 5
1= oX ok X o -;/PT[_'('>:—\ [h=0)xv-0=3V>0
<2 =g s 1 \Yj = lwose L.
S O A If t1<0, Elclt)<o > imesting
-3-2-101 2 3 456 7 8 910111213 t

This conclusion is replicated in a game with a continuum of types and holds even if uncertainty is
vanishingly small.
Thus, global games approach give a simple tool for equilibrium selection.

The outcome we obtained corresponds to a situation when a player has a “Laplacian prior” over
opponent’s action: each action is taken with equal probability.

In this case a player should invest whenever v/2 > ¢ and abstain from investing if v/2 < c—same
as in our BNE.

Risk Dominamce
The Nek-olominant eguilibrivm is the one with higher ofeuiativn
- powjoff product.

L L p (Swpme a>e, bod, g>c hof)

B lef gk (ThL) Hz2k-clows nout l'f (a-extb-d ) > (§-S)(h-§)

Notice that in a symmetric game, risk dominance coincides with the equilibrium made up of strategies
that are (strict) best responses to a 50:50 mix by the opponent.

if plawer 25 plaging So-So:
b.c 55 32 lower 1 shonldl play T
d,d B|o2zx 44 tmk—m'ﬂmﬂ
1 1

(a—cP>(d—bP? & a—c>d—b & 7a+§b>%c+%d.



Rizk - dominomer is a Fa/;rw%o. CNTer'on.

Cae TrowsttVTTY patoclor
| L M R
T|6,6 0,3 20
C|3,0 55 1,4
B|02 41 44

Check that (T, L) risk-dominates (B, R), which risk-dominates (C, M), which risk-dominates (T, L).
K> 2 33251 2522

Global Random voutoble = better L2) gingle L2) NE
(%e PS 2-3%)



Weeks 3 -
Knowleolge in Games

Informastivn anol. Kuewledge



Informafion and Know! eolge

Assume that thee is a finife state space © and o common prior .

- A state (of the world) 10 €Q captwes all relevout whestauinty:

the Stafe of nafute (pHmtive wncertainty s e-q-, paqu ). Who knouis
what about it and about each others informaton, etc.

o={[] 10 EED with uiwd=%
- Bvemnt E ¢ Q1o Hrue Cholde, obtoim) in State w f‘f WEE.

F‘or example, E = { B IZ] } i.e. E ="an even number appeared on the top of the
cEC:OIAds inw= B and does not hold in w = B
Plauer Information
Planer i informativn fo represeittecl by an informottion funchion
yollth assotates with, each WeN set Pitw) with properties :
- A collectivn Pi of cefs Prlw) forms a pantiion of €.
- Inshoite © player 7 only kwowf) Hot the stode n Piew)

@ Suppose that Ann knows whether the outcome of the dice was odd or even,

ws W
Parttion > P = ({ 1 [ ) { ) (3 E9)).
b (a6 Paccon = Paleos)=Patusy
@ Suppose that Bob knows whether the number was 1-3, 4-5 or 6:

- (D OO {BE{8).

o In state w = D Ann only knows that w € { D B, } and Bob only knows that

we{E], S B}

Khowl
We ean that player 5 knows B in stale v if Plw) B
~ the evomt that [ knows B js Kilg)= fwe piLw) € B3
—the mapping Ki: 2% - 2% is calleol plower i’s knowledge oporsitor,
_ Buomt E = fur, ~wi} 2 €033 st
E= { (=5 1577 (= B} Kelt)= fE|,|Z|,|Z|3 ﬁ:&g]spmz’; % K pwy CE
. | A% 5 K
Bob knows E inw € { D E] B} (e.g. Pa( D) C E), but does not k}:lm inW\ %E@ﬁ R L%
w= @ as Bob cannot distinguish this outcome from .



Properties of Kiowledge Operotor
Definition: K(E)=f{weQ: Piw) CE} Kp(E):= flﬂ,lﬂ, E”
Example:

p=((DOE{OELE) {0080

L Truth - KitBYSE (@ plowjer cam only know Something that s tme)
2. NetestHoetion - Ki(0)=Q (@ plowjer khows the siate Space)

3. Inference: BSF = KilB) < KitP)
F={[J 3 & 0 &)=k = {0 LG E} > Ke(e) € Ka(F).

4 Negortive Introspection .
TKilBY S Ki (= KitB)) (ho umkmown unknowns)
A ploaur | A% 344 EBALFIIRER ¢ fbirfenke ) Boxt B fmAIL
8. positive Inirospectvon -
Kiltp)= K (KILEY) (o plowes Fnowhs oWn informatibn Shructme)
plowper | Fosh B2 it ik ke B € A ARER

Comman Knowledge
- The enent that everybddy knaws B is.
KE)=NiKi(B) = foefy: Pitd cBfor atll i}
2. The event that everyboolyy kiows evenybody knows & s
kacer%ﬁ:f))m (o6 B> K for alh
Mo . )= fWEQ: Pl KRB for all |
3- Thﬂum is commonly known is « K=(E) = Nn K" (ED
Bvont G is commonly known in stale w if 0 € K®(E)

An atternative definfion of common knowledge .
. An vt Fenis sekf-ewiolunt befwen plowjers A andl B
if for oll weF, e bhome P CF, i=AB

(thoet 05 Woben F ocomz, brth plamers know i)
5. An event E <0 16 commen knowledge between A anol B

o v if There s A sef-epiclnt event F such that -
HweF @Fck



Example

This example is from Osborne and Rubinstein, 5.2.

P= ({0 0} {2 3 &) {63)).
- (D {B B O {E{E)).

E= { EL D, E], E]} does not contain an event that is self-evident for A and B. Hence, it is not

common knowledge (in any state) according to the second definition.

Also not common knowledge according to first definition:

kaE)={[J LI} ke(e)=E

kE) ={[] T}, kw@En={[l}, KxkE)=0.
The event E' = { } is common knowledge in .



Example . Dirty Faces

Each of three players, A, B and C have their face either dirty (1) or clean (0).
The state is a three-digit number, where the first number corresponds to the state of A’s
face, second number corresponds to B’s and the third to C’s.

Q = {000,001,010,011, 100,101,110, 111}.
Back Plower only knows state of ether plowjelz’ faces
Pa = {{000,100}, {001,101}, {010, 110}, {011,111}}

Ps = {{000,010}, {001,011}, {100, 110}, {101,111} }
Pc = {{000,001}, {010,011}, {100,101}, {110,111} }

Player A Player B Player C
010 110 010 110 010 110
01 11 01 11 01 11
000 100 0¢o 190 000 100
001 101 001 101 001 101

let B"=Q\{§oor} = “of Jeast one face iz dirty”.
In whith stafe Cif anp) E* 75 common kneroledlge 2

Answer
K(E*):{011,101.110.111} K(K(E*)):{lll} K(K(K(E*)))zw
010 110 010 110 010 110
01 11 01 01 i b b
OQO 100 000 100 000 100
001 101 001 101 001 101

Pa = {{000,100}, {001,101}, {010, 110}, {011, 111}}
Ps = {{000,010}, {001,011}, {100,110}, {101, 111}}
Pc = {{000,001}, {010,011}, {100,101}, {110,111} }



Veardgitn 1L .

Sage enters the room, reports “all faces are clean!” if this is true (i.e., announces if 000
holds), says nothing otherwise.

All players know this, hence each player can distinguish 000 from the state where only
his own face is dirty:

Pa ={{000}, {100}, {001,101}, {010, 110}, {011,111} }
Ps ={{000}, {010}, {001,011}, {100, 110}, {101,111} }
Pc ={{000}, {001}, {010,011}, {100,101}, {110, 111}}

Now i B* occurs , them evemyone kinowe 1t (s fring: KIE™) = €%
£ is oL Puloh‘o event , tharefore K2(E™) = E%, it 2 suf exolest.

. ‘ e ones hamol 0 S08M A4 &
Dhamtc Game : Version I i foc. 1 ity ime peferonce

Sage announces that there is at least one dirty face.

1. If there is exactly one dirty face, then the player with the dirty face knows it and
immediately raises hand (due to costs of delay).

2. If no one raised hand, then it is common knowledge that all players know that there
are at least two dirty faces. If there are exactly two dirty faces, then the a player with a
dirty face observes exactly only one clean face and know that there is more than one
clean face, so they infer that they must be the second player with a dirty face. Hence
they raise hand in the second round.

3. If no player raised hand in the second round, this means that each player saw two
faces, which implies that everyone’s face is dirty.

Start Sage moved No hand raised No hand raised again

010 110 010 110 o0 10 010 110

01 11 0 11 o A

0§o 140 000 190 09 100 000 100

001 101 001 101 001 101 001 101

Almezt Commen Knowl edlge

Is high order mutual knowledge of an event “close” to common knowledge of the event?



No Agreeing to Disagree

fori€N, EcQ and p Lol , let £ = fwen JulBIPiu)=P)

be the event That plager & assigns probability o &.

. Swbpose it i common knevledge at w that pl L asi robabili

| ?@PE o Fhat plowger 2 arsTgns prabab)mg%& b E
> Then p=p

2. Intetpretorion -
aory%m PIIOT i plowpers begin with joloihital beliefe abot ©
Than oy difEerences in” beliefs s olue fo olifferonces in kformortion
(1.2, Piw) # Pa(l0)) , thms canwt ‘agree to disogree’.

2. Belef amd Commen Kinewledge

How can beliefs become common knowledge? Suppose that players can announce their beliefs...

! 1/3 1/6 )

:E B /: @ Take E = { D, B} and suppose that the
e £ state is w = [,

e e ! @ A announces that her posterior belief that E

holds is 1/3.
0= { E l:\, B B} @ B announces that his posterior belief that E

holds is 1/2.
® Common prior u ( ‘:\) =5k ( B) =08 @ A concludes that E holds with probability 1
Iz ( B) =p ( E’) =16 and announces it.
@ Player A knows whether the number is odd or @ B concludes that E holds.

even: Py = ({ E7 \z‘} ,{ E, \z‘}) @ Check that if true state was E then the

process leads to common knowledge that the
@ Player B knows the color:

P = ({ IZL ‘:\" B} "{ ‘Z\}) posterior probability of E is 1/3.

e e
P o= o Take E={ [1] [T},
ED & e : @ A's belief that E holds is 1/2 in every w.

“““““““““ e lhwe { By IZ]} player B assigns
e o={[] [} belief 2/3 to E.

@ Common prior 4 ( B) Y ( D) ®Inw= B player B assigns belief 0 to E.

y ( B) =y ( E]) —1/4 @ Inw= D posteriors are mutually known.

@ But there is no state where player 2's

@ Player A knows whether the number is odd or posterior is common knowledge. Indeed, 1
even: Py = ({ E‘ B} { B B}) and 2's posteriors are not equal.
@ Player B knows the color: Disagreement is common knowledge.

Pe- ({5 D ) .{2)



Epi s‘l’evm[vgﬁ
Epistemic condthons for solutivn concepte -
(what plagers nezol £ fnow Leqd. absuk each ofhers’ raohbm,uﬁf) in order o plowy)

1 Fx oo game = (N, (Aidien, (Widien)

5. Stode e gpecifies (olesoribes) , for all 4 -

the achion Token by plowger 7. Qitw)
fplcw,m i& beliefs, pobability measwe glicw) over A-i
what 4 knows, Infermachion Set Priwo)

3. Sowy ot plover 4 s rastionadl in state w if fie plows o
best response given i3 behief . i.e., Qitw) is best tesponce
ogounst belief mduced by picw)

4. poowme oot beliefs oue comsizlent with kylmlw{ge. Thot i2,
the GUPpETT OF LU(W) s A SubzRk of fA-it): W' & PLw)3

Commen. knowleolge of rafimalety implies rochimalizowility.

Suppise thart in stade wo 1 [s Commen knewleslge Hat plowen are roctivonad. Thew,
for ath ©. Giw) is retivnalizable.

I§ beliefs oue olerived. from o common prior awol pl ore
Mtienal in every state, then we obtain a conelateol equiltbum,

If 4 ie ol eupport) commeon prior, plawprs aue tafivhal in eveny State. Aivo)=
Qi) for all ¥ andk 10, 9'€ Pw), Hhan (L2, M (PO, (84X 1S & conelateal eszt’h'bn'uw\.

Nowh equilibrium. Fix storte w, Then an action prfile auw)
is o.pwre Nash equilibrium if in State w for ol 3
{ i kws the oHher plawer’s acions  Pitw) ¢ § o= Gi (W) = &-i(w))
j Ts baxhvnal: Qitw) is the best reLponse 1o dri (w)



Weeks &

Dynamic Goamer

Extensive form Gomes

SPE | PRE 1 SE

Refinements rward indumotion
rwihve criteryn
diWmty
Spenciam Signaling



Defimition
Dynowndic Games . mudti-stage gamss , games playeol over fime.

Slatic qame dynamde game '5 commitment v Time Consizten
“strategie form” "extensive form’ | wfion opporents mone wnexpectesl

Modsle whure plowgers mapspwlate eadw othus’ informadion over ime (signaling . jomming,
feputaction....) aue prevaleit ih ECOMOMALS,

Example- the 'Enhy Deterence’ goume

A monopoly (called |) faces a potential entrant (E). If the entrant stays out then it receives 0,
and the incumbent gets 2 units of utility.

If the entrant enters then the incumbent can either fight or acquiesce. The former yields
(-1,-1), the latter (1,0) for E and I, respectively.

representocipn - game tree

2

in_ I A
’ 0 g In = | Lo
owt F j’oﬁm Owt 0,2 0,2
027 1)

NE: Un A, (OWE F). (Dwt, pF+(FP)A) with p>s
- Backwouol Inoduchon
2. Gubgoume. Pesfect Bguidibrium (SPE) . only (In. A)

¢PE rmles out Nash equilipria gnstainedl by nen- credible Hbealt

Extensive -Form Games,

Aomers, et N Nowte cam be one. of #he plogers
Hintories, sef H A hWistory & o o sequomce of movies fo a ginen peint 1 fiime
Moiloble achvne , set Aty Tetminal hiatorer Z eH ane suchthat vz, A= @

oWur aSGRMINt Fauncton, PLhyEN  movee at A 6 H\Z s if PLh) = Nofure,
P %)glrt :ﬁM’l PR thete is o probability mzq‘aifb];mm over Ath)
Informatibn sefs T a collection of dijeint swbsets of H whose wnion & H

(i:es qpartiion of H)s for R, &€ T. Phy=PUk) ansl A=At
Poaoffs FULRY Yien at evengTerminal histomy 2€ 2

*Bokiegs - pobability diztribuhion pver nooles in am informarion set



Represemiation amol. Comersion 0 novmal ]%rm

1. Losslest qraphical representation . ~Game tree +
- Directecl graph with o <ingle it node s edges represent meves
- Pobalilities e edges tepresemting Nodwe (chowee ) menes

- Nodet thait the deciding plawer commet distingwizh (wluth are inthe some infmahion
seh) ame connected byn%zta%ﬂm. e " o Inf

2. Logby cowersion.: Normal Cor strodfegte fomm )
- A sitafegy s o plowjers complete plam of achion , ishng o move at eveny infrmativm set
- A sitorteqy profile (one Shotfeqy from each plawer’s soty oletermunes, ah evdcame (payoff)
- Diffrent extencive-form games mowy fowe gams hormod form.
*) %MNW Wo; \oa;L W’S strofeqies = TT the mumbess of achbins onasloble of each

Bxawmple: Simmltaneons vs. Sequuntiol mewes
Alice (P1, row) and Bob (P2, column) play Battle of the Sexes.
Cafe  Pub

Cafe | 5,3 | 2,2
Pub | 0,0 | 3,5

5,3 (22 (00 (35

Alice first, observed by Bob (singleton info sets in extensive form!):

CafeCafe CafePub PubCafe PubPub
Cafe 5 3 5, 2,2 2,2

Pub 0,0 3, 0,0 3,5

o] W

Bob's strategy XY means, “X if Alice plays Cafe, Y if she plays Pub’.

Example - Recuced. normail form

0,2)
“Poison pill” in entry deterrence
P replaces PA. PF (equivalewt)
I PA PF  NA NF
In[1-1[-11]L0] -1-1
Out | 0,2|02]02] 02

02) (1,1



Soluton  Concepts

! B%@ﬁmsfw'j‘%w qame can be conwerteol mAv 1S (redmczal)
normoul form. Informothvn absut dynonwmts mow be Lost,
2. bveny fivite, normal- form game fas or Cmixeol) Nash eguitdibrium.
3. A Nosh eguilibrivm mowj faud lme consitendy : &froifeqres may fail
to best reepomd G Some out - bf ~equilibrinm conAinmotion.
Refnemante of Nowh equilibrinm in duname qoumes-
- Subgame - perfect equalibritm (SPE)
2. Perfect ~ Bagesion eguilibrium LPBE)
3. Sequantiod equilibriwm (SB)

Swbgame ~ Perfect Bpuilibrivum (SPE) Firnet grmss, complete info
Subgame - the conhimmortion of the gome (sub-tree) after a Specific
fuztony noole ), such that no informarion set & broken up’

oPe- a stroifeqy profile that i Nash WUW‘WM M vy swbgome .

Theorem (Kuhn, 1953): Every finite game in which players have perfect recall (do not forget

.

own prior moves, not the same as perfect infol) has a subgame perfect equilibrium.

In ginmltancons games, there ahe mo eubgomes, thins ol Nosh are SPE

Perfect Bomesian Equilibrivm (PBE)
PBE: A SPb stuleqy - prfile anol beliefe o all plowers at ther
n WMVnﬁgvgs,Psfm’yfw’y\%: K
I- [ 1y : Each i en Qiz beli
R L, LT s e i o bif oo
2. Bawjesioun beliefs . Beliefs are computeal baseol on equilibrium stroegues vie
 tule whzheper possible. No restrichims en beliefs of “wnteached” informodivn
Sefe in Swd—plouper goumes,

Theorem (Fudenberg & Tirole, 1991): Every finite game has a PBE. J

On-path belitfs aemeratec by equilibrivm eirategies, vio BMZ% rule .
aﬁ—Fpm be&ee?s Chosem by mer%/(otdu 11 swpp% the egunfiborium .



Sequuntiol Bauili brium | |
e e e o ot ﬁ@%ﬁ‘?ﬁ%y ed
1. Awsesomunt (V) is considtemt if Hhur s & e (v, u™) thot
e Vi o s 1 il !
N et e s P @

Theorem (Kreps & Wilson, 1982): Every finite game has a sequential
equilibrium. All SE are PBE, and all PBE are SPE.

OFf - poutin. belieft rutst be the Lot 0f Boawptiaun beliefs gonshotes
by “tremboled’, otiurize same ok PBE

) STR
Fot-mover pdvantfage -~ dxy T oxiel,
My manginal prfit changes oith yewr mpud efforts
f Berttowdl: BR; = §(Pp) ¢ Setdind- mawr
Stadkelherg - BRi = f(gp 1)+ fivel-maver

Example - Reinharok Selten’s “horse

>11D pure NE: (Dl (A,a, R)
QPB: CD)&:L) > (.A‘) 0\,» R»)
PBE‘ LA)OL) R),
pour ' bk - o< §
V}(L)=%4>¢(17M4>3= VsLR)
(A, & pLt LFPIR),
=3, PR

“off - pacth mixing” by plojer 3.

(3,32) (0,0,0) (44,00 (0,0,1)

a d a d
ATTiTT 720 Ao T o0 *) (D4, L) wot PBE becanuse
1,1 | 4.4, Dz | YUL 1 2 chovses ol omal
D|332]332 D000 |000 ];W% enttome LA, o, L)




Exawnple: PBE| SE Applicovtvn ( Corttipede ith olowbt)
1 A 1

A A 1 A A

A

(4.4)

(0,3) 0.4) (0,5)
Suppose P2 (she) believes there is a g = 1/3 chance that P1 (he) is
“irrational,” i.e., a commitment type playing A at every node.

P2’s prior is commonly known; P1 knows if he is rational or not.

> the wmgns PBE:
node n=1 n=2 n=3 n=4 n=5 n=6

1 1 p=tr2  qz=1r2 1

(4,4)

2
(1,4)v  (3,3)

\

=12 1

A

(0,3) (0,4) (0,5)

“Sane” P1 plays A to build a reputation of being “crazy”. P2 goes along (rationally); players
burst the bubble near the end.

In the unique PBE of the “Centipede game with doubt” both players play A in early
periods, provided p0 is not too small.

With 14 < y0 < 12, we get A in all but the last four periods. The smaller p0 the longer is the
endgame where players mix.

The PBE is unique — the proof of this is a bit more involved.



Extensive - form ,Qe,\ﬁ‘wvwrﬁs

Forwourdl Induction  Huvking abowt +he ratimal belinds e
Soomingly imationad pont: uifly we are "

BoS with option X
Consider BoS where Alice has an attractive outside option:
Aice X o) (X:P): Nowh, SPE, PBE [ips %), SE
’ f Rob beliowes Upup>t , theit he
c P plays P $v Aliee plays X. (PBE)
Cafe | 5,3 2,2
----------------------------- Pub 0,0 | 3, 5 (&’\rﬁ :c) : Na_‘v]/h PBE’ (/(/(-(%‘_‘l)
X|140]40

(5,3) (22)  (0,0) (3,5)
0 $B supprrts (Xs P) ‘ . ‘

for m=1.2, fot W= Cofet mPub + (- wp - mid X, V"= # Cofe + U= Pub

Using Bauers rinle , Bobts belief that At hat Plonjed Pub comditionad on housthg plovgec

eirhur Cofe awmdl Pub ~by mixtake” /5
My = PrLpub | not X1 = =22

Ao m—>00, VA X V&' P g = 1. Thurefre. (X P) with tpub =1 b 4B

Rut - Alie quarowtiier 4 by plaming X. By hot plaging X she Must be expecting mere.
Oy Cofe can yidd. more for hur-. )ﬁtmamapo

Intwitive Criterion
Peet - Quwizhe game ( Cho & Krepe, 1987 )

A pub-goer (P1) orders either Beer or Quiche. A bully (P2) sees this and either fights him or
not. P2 wants to fight if P1 is weak but not when P1 is strong. Only P1 knows his type; the
prior probs are 20% weak, 80% strong.

Weak P1 likes Quiche, strong P1 likes Beer; neither type of P1 wants a fight.

planers : Notwre . P1, P2
Hixtortes & Achons -
0- Nectwre pitke P1e fype, weak (Plw, 30%) or shong (Pls. &%)
1. b1 observes M type, chovses erther Beer ot Quithe .
2. p2 observer PL's achvn bwt mot s type , picks Fight or Not.
Posgoggs
P1 gefe 1t consmt whte itam, 2 fr avgiding a
f pa 3001‘35 1 ]32# ;ﬁWw‘l:\v% mk or 1ot figtng strong Ptﬂ 0 mae
gOlW\'lW .
Beer - Cumdhe. 2 axfengive form .



OSEight  p b1, ouiche  Figitr©0)  Proling PBE whiste brsth. Jypes
S ¢ ,_Quzchi,.é/y of p1howe beer,
(3,1) Not ENot \(2,1)
0.8
EPZ N e PZE
? 0.2 |
O.1) «_Fight Fight_»(1.1)
Y VENEEPINS S —>¢</
(2,0)< Not Beer  P1,, Quiche  \ip (30
> Player 25 choie W2
FF FN NF NN W if PL chise Beet, 2 "f
BB|100201,02 37208 3,208 P1 chose Quuthe”
BQ|[1,1,02|1,3,00(3,1,101 3,3,0.8
QB [0,0,02[20,1.0 (0,200 2208  Puyff waritlonin, each col
QR |[0,1,0223,08(01,02]230.8 in +he oroer Pls, Plw, P2.
y

P‘W Lo chot XY, "X 131 , Yff woak” pure NE: (BB,NF), (QR.FN)

PBE belidfs fv (BB NFY |
pa. prLple| Beerd=0.8 > P2 duetnt fiyht affer Beat
free 1o chonse PrIPLs| Quuche <3 => P2 fights affer Qutthe
PRE telife for (RPN
P2 pripiel Quuvhe] =08 = P2 ceent foghit after Quurhe
free fo chonse Pripis) Beerled = Py fights affer Boar
P1 plowyng B or AR : Inumhvie 1o dedioife

Qegiuuintion EquuilibHum congtruchion
proling on Beer for pooling en Guithe

. [1-1/m2] [1/m2] . . [1/m?] [1-1/m?] ;
(L0~ Fight Beer Pls  Quiche Fig 00 (1.0) 81 Beer Pls  Quiche Fight »(0,0)
(3,1) ot §Hp(m) Ho(m)i Nof 2,1) (3,1) < Not Hy(m) Ho(m)i No 2,1)
0.8 0.8
N p 9PN r F 2F i, N¢ QR p2i N
0.2 0.2
(01)« Fi i (11 O« Fi i 11
Fight Fight ight [1/m [1-1/m] Fight
QO «<4for | Beer Pl Quiche NGp50) 0« Nor  Ber Ply Quidie N (50)
Ae m 00, BIMY> 08, Halm) =0 (jn both cose)

Crumteririmtive !

P1W cannot possibly gain by deviating to Beer (his equilibrium payoff is his maximal
feasible one). Then why does P2 put at least 50% belief on this type upon observing a
deviation to Beer?



Concmsivn ( Indwitive Chiterion)

m pbseaving acoluoction, put 2ero welght on Types whiese
P (i bH'MMAM excendls axf pos%ible from levdovting
(A5G, OPPORLIT 5 achion it Ntional or some belvefs )

Result by Cho & Kreps: In the Beer-Quiche game, the PBE/SE
outcome selected by the Intuitive Criterion is Pooling on Beer. ’

Divinaty ool Stategic Stability

(41) A
‘><—1 L BN ST
(1,00<<F | 0]

| 0.5
P2 N ¢

(3,0 A a 0.5
>¢’<—i»——)—> 2,2)
1,1) T In P1, X

Pooling PBE/SE with (X, F) and s = 0 satisfies the Intuitive Criterion
because both types of P1 could gain from deviation to /n.

This equilibrium “feels wrong” as P1g gains from deviating to /n for more
mixed replies of P2 than P1,y does. Formalized as Divinity.

Divinity D1 (Cho & Sobel, 1991): Upon observing the Sender’s Dy Do
out-of-equilibrium action, the Receiver must assign 0 beliefs to a Sender umvers
type if there is another type that gains compared to its eqm payoff for a

larger set of sequentially rational Receiver responses.

Strategic Stability (Kohlberg & Mertens, 1986): A strategy profile o* Tremdoling -

is stable if, for any sequence ¢™ = {e™(s;) : s; € S;,i € N} > 0, with Hamdd. P Yon
€™ — 0 as m — oo, there exists a sequence ¢ — ¢* such that for all /, Aémm v

o™ is a best response to o' subject to 07" (s;) > £™(s;).

Thet i, Y* 5 Stoble if 15 2 the Limd of Nash equilibno. subiect to
“rembles %m-fmfbl%f\/mzk. Robust, mow fmm enit. oy e ﬁ‘F



Spenciomn. Signal
Thorstesn. Veblen (859D : conspiomns comsimbtion , Veblew goods

(wakte to disylonf STUL)  ( domovnal therenises Wit prizes)
Polatoh . feast 1o dixplay wealth

Michaet Spence 173, 2001 Noked ) - Jormal moolel

Bponit/s L157%) glgnaling gome
1. Notwre pitks worlers type D€ £0L,0nY ;5 PriB= G+ =
2. Worker observes 9 amd chovse eolmconton Level e 20
2. (At leawt two) fiome observe e bt net 6 and. et wage w.
4 Worker acepts ot most onc offer.
Wotkers payeft: 10— e 6. Zer eutside eptiom,
fﬁw& Pwﬁﬁ 6 -w if it amploye The \?vﬂcu, 0§ it does not.
PBE: (€10)p-0..6m - W)ero, Mh(@)ero) , Whate pie) = FrLB=0nle]
Final bl PBEs = apply the Lntwitive Crterion > Sefect a wpue ouftome

Exomple. of ov poohing equililorium Exomple. of o separotng equiLibrium
(hotin Types ot edd)=e* = mie®) =) "
W

L
//' H: W'@IB On
Ot

ABHALN) B = 5 - -

wie

-7
(& "

o A S T
1 1

(BH-O)0 & ( BH—BID () e

&% AP 00 L e
WIEM) = ABn+ LX) B
for other &'+ €%, lot p1€)=0 AHorefore w(e)=0,
Oheoke D2 &% < A BH-BO0L , otharwize OL cleviafes fo =0



Weeks S -
Bargaining, Evoluctionary Games

Bovryg, MMNG = Nowh's Ax\\yms 3 Rivk Aversion
wav W, Boug, aining Maoolol
Evotvdi ouy stoite QMQ%A% (ESS)
f th\cottor Dynomic
(Stocharh) Best Roply Dynamwivs



Bmgm mng
' . opeufl onable conditme. solic houlol gt

mewhm ?am WTB E?% m‘n% d;ﬂc:nfML o{qq,{%lz q}?%a@gmi/lkg vacefg
Norccoopetaitve Game. Thaimy 1 Sk i S o ™ 4
X = set of possible agreamemts %
D = disagreemasit

plowet & hot Whlity Funoton i, XUD — R Bowndowy (L)
Dxagremant Pont - ol=col. ol2), dii = D)
U= fll®0 MalX)) : XEXT U oL

. ifmaawmw
fisnption. ( gcevt{vneu st Visds, Vasch < —> U
D e comwex . Clozed ahol brunoleol ol=(0,0)
A borgaining problem iz o poul (U, o) the Bargaining Set

Nashs Axioms

Let F be o function which astigns a unique eviftome F(U,d) €V
Yo eveny bargoaunming problem (U, ol)
1. WP (Weak Paweto Bfficiency)
if = F oy thete daes 0t exzt™ (Ui V) €V Such that Vizl and Vasla (71 strict)
2. Sym (Symmurry)
(1 o) is o symmefy problem if di=ch anol (Vi) EU < U, ) € 0.
1 () is o symmetnic problem and U= F(U, o) then W= Ua.

3. INV (Imanance To Equivalent Ponjoff Representortions )
Given, oli >0 and. 8i Let .
Wi' = lili+ 8
( U'= f(dl%ﬂ@n,d:%)—*ﬁm) = (Uns UR) GU}
ol = (oholut 81, claola+82)
Then = TFLol) &> Ghiat@r, dalhs+§2)= F(U, ')

4. 11A (Inolepenolence of Imelovant Alternatives)
FUCU, d=d and FL,d) €U then F(U, d) = F(L o)

Nashs Theorem (Nagh, 1350) o p i
Thate is a unigue function cotizfies WP, SYM., INV. I1A, na
V:F( U:O(') m;f;?fm'z% (Vrdd)(\/z-dz) g{t‘ (V)'VP)er Vlzdd, V2_>/0(,L

Provf: 1 Nosh's Solwiton = Nashs axyms (ot necesbarnihy equidibrium)

2. W/\AW budlel wp from s{zwt‘ml Cases



Us Uz

- ; A WU, 0L is Hhe mhd-point of the
W =FLU,00) is Hhe mid- point W=
potennse. (by Step 1 amol INV)
Dfmwpmmal (by STM, WP W}i 2. WX maximzes ks Wilhs s Unla-bidn)
/ . o wainvizeolait Wiz 55 Cmiolpernt)
w
ol W o U
U is am isoseles tHomgle L is o Nght - angle tromgle
ool ol=10,0) ool o= 10,0
us Uz

Abol’: right-oungle trangle
Hene Flabd) = Nash olution
b TIA > EW, d) =n' =N (U, o)
(Urdyer-oly=¢ = ) INV=> F( Vd)=h= NV, )

wU==C

) — W

A 3 — Ui
General Convex bargaimng j COTWRATTY <> nmiguLnlss

pwble,m (V)

Effects of Rick Aversipn

Wity funcfivn Uix) dizplows constant relative N2k amersivn if
wx)= 9:?:“ D<R<1, =\ conesponds to risk V\wfmh"rg-

Example « divizion 0F pie b Size 1 A Rl
" (agomt 2 75 N‘sk—;%ml and| '/I\ e=l
ogont 2 Mgk owerse With @ 41)

Noeh Soluctivn = max Ut ) Uatx) = K C=%°
Equivalemtly - max LnX +@An(l-x) R
FC: x-@7®=0 > X=Trg > 3 o l > X
Nach Soluton gives more of the pie $o Hhe

N3k namtral plovger (lews rizk owerse)




Non-cooperahive. Mooleds of Bargaining

Diemss o seqmunte of models of bordaining process -
1. the Nagh Demamol Game
2. the Ullimatum Game

3. Offer - count

4 Offr~ Coumteroffer With ol2counting
5. Offer - couuferoffer With breakalown
b. Infinitoly ~repecited versions

1. The Nash Demanol Gome
pl 7=02
whility functions Wi - Loal =R
e‘tmtfeq,{%: %, X6 [oy1]
owtoome : (%, %) i %1%z 10,0) otherwize
Bamibrim: (% 1-%), (1))

9. The Uthimatum Game

plower L proposes ol R (X, %) 8, KtXz<], X Ka20
plaer 2 oCepts (1) o1 refeets (N
pwicome: (%% if Y i 0,0 [f N

SPE - plowger 2 accept amy offer , plower 1 offers L10)

2. Dﬁ’u-&mm‘tem{ffu—

Roumd 1 « plowjer 1 makes offer. plower 2 204 Yes or No

Rownol 2« i plower 2 sadol No, ghe wmaked ofer anol plower 1 respordls
GPE - plowr 1 offers (0,1) andl plowger 2 accopts

4. Offer - Countteroffer with, Dizcounting
| i disownt by &«1 20l,
g\a?uwfwwuaﬁa plowjed gnqc%% [?d‘(»d. et pert
SPB « plawer 1 offers (-8, 8) anol plowger 2 cctepte



& . Oer - Countteroffer With, Breakdowon
No didcounmting : &8> |
£ refechvn ety in penbel L, bargaimng breaks dovn with prob ot

SPB « plawger 1 offers tok, I-d) awnol plwgu 2 accepts

b. Infitely Repected Offer - Cownderoffer with Breakolown
No dizcounting : &= 8> = |
£ refechiyn DCuny in penbat 1, bargadmng breaks dovn wrth prob ot
plamert allternade in makiing vffers umtil acceptance or bieakdown

X @) = (R, Roldd) ool
@) = () Holel)) by:
Us el = (12 Ua(Ha L))
W CTh) = Us) Wi (3ale)
Note Hort = () > Hi@) ancl K26 <Hetol)

Stodonomy Subgame P&fwf Equilibiuom:
plowr 2 actepts X= (X% X=) i
E WalX)2 (I’of)'x()—(@z—(cl))
plaser 1 acepts Y= g ) iff:
WD 7 (-) U (R ey
= plower 1 odwows offer X(d) , plawer 2 §ld)
> Butteme : K@) in wad, 1.

pwpveih‘on 1.
When o =0 , anol bieakolown utowme v Hhe cizagreemesct poivt
(du,oh2) - The. SPE offer X @) 2 vy close 1o Hhe Nowh boapning £alvettn.
L % @) = e, 1)

Wit (M N2) maximized (Ue-odtUa-ol2) over all e U

P’m—vf : Do tTply - (o) W LR o)) Uakald)) = () Un(Falol) LUaLFrick))
> (WD), UslBld)) owndl (L)), Ustpld) lie om a
" Aowel (Ve (o hugperbola) of the fanchvn Usid

/ (WG D), ald)) )R- >0 at d—0
n = boih KW anal <) comnge o n
o [ wtos), W Ka)))
Q

U



7. Infwitely Repeated Ofer - Cowdersffer woith Dixcounting
apt fm(ﬂ%y&u}@)
W= SR
P"’?"‘"\?’yf‘ cose o 1 the SpE A chose 1o e
If &, 8 K %, 1o
gm% /\)ovik éolwmorpz s v
max )P U@ P, wher Py =-Lnsi
st XatXa g)s X), X220

FTV’D:f? If pi = —Ind;, then §; = e P and so

U (%) = e Pua(92)
u1(y1) = e Plu (%)

[ulm)}”m e [Uz(f@)r/m

ur(91) uz(%2)
= ur(%0) Y Prua (%) P2 = iy (§1) P ua(92) /P2

E (ul()?l), ug()AQ)) and (ul(f/l), U2()72)) lie on

1 1
/P1 u2/P2

the same level curve of the function u;

(x) Kolai - Smorodizky Cks) golwhon
an olternative vo Nowh bargeimng solwtvns .
1 U« two—plowjer bargainmng &4
d=10.0) < dhizagreemend point
2= MoK W U U eV, Eh>
3. Among ald pohrs (i, Us) €V &0, e =gt . (o (W W be
enchthot &% < B2 e o maximim
Properties . 1. nt eativfy Nashs inclependlonce axiom
a. Lingor grovith of each. plongers gasns ak pie grous



Evolwtionary Game Theory

Bolwtionanily Stable Eguilibnum. stoti ldea infemded, to capture
PObwsTnesy to %mlm by%m (shicks, pertubations)

Bxplicit, clynamis .
. Replicodtor Dynawme Colefermimztiz ) Anothad pefinihon for Fet:
2. glochasty Shocke 2 % B i V#L", Hke B0
st V¥ 2€(0,%), we e,
Rivlogicod Froumeroprk Ulo® (O™ A E) > U, (FE) o)

- a louge population {f indiwidumads or orgamems
- eflda amdlpvoed with. a behawivral stroteqy (mhated)
- o glven Two-person gomu in tamdomiy ass) aATS
- mﬁz o indiviolmal s gmi‘e of repmd,uma%,,\ ( D%m’m Triness)
A o perRON SYMMEINY qame G.
A= achbn gpace
uiaa) ~ poupoff to an a-ploajer wiem e opponent plos &
{ngl‘m)f y: amn achon a €A
mired strofeqy: a probability olidtrbution over achvns, o
f Monomorpit papulativn . evenpone tas the ame, strock \
Polymonphic. popwlavton.: differemt divioluals, oufferent sfrorfegies
Budlutionanily SToble Strategiesa (ESS): stafiv conert ﬁ,;jg‘j;;ﬂ“y}“ﬁ;,; -
A strateqy o is on €55 1 the fllousing o conaitions holdl
One -t ™ R ool symmetNz NE of G abo. Wah a2 VLD
P@@W’Wf 2. 8% d™ i o hett reepanse o o (VIR = V™, dM) . then
0(8.8) 2 L™, 8)
> (0oL B A st NE (f Ve+a*, U@ o<Vl d*) 3o i bS5
> mised NE comnpt be STt

Bmmplel 1 b{DWl\oomu wrth population growth

o | 22 0,0 s pOPOTHUR Plaghg & > (a0 . ibib) ate BES
bl 0,0 1

b = size of population at Yme t (fime didtiete)

Nalt), Neh) = mamber of ocplowers | b-plagenrs at t

> Notth) = ADPLHI Nalh) + Nall)  apis < fitnen (expedted paspff)
NecttD = ALI-piby] Nbih) + MbLt)
A= proportioreitty factor (clpencls on time scole )

> p<% s the basin of adtrachon of p=o; p>2 for p=1.

(set 0f povite from wWbuzh comerges Jo p=0)

M oowld be that A s €65, but coumlolint resist fiao mudowtls’ oding strteqy simulfaneonsly.




Example 2: Howok-Dove Goame
| A P A: 0QRRHIVE , P paussive
7 A %L LE vo {v: volug off resoITes
Pl ov %£.% C: cost of fighting

V>C: (A8 B o gt NE Wﬁmﬁow om Fs%
V2C: (v]e, 1-vje) & o0 mured. N5 ok am B55.

Ula*, ) = p59 + X1 - p)v + (1 - Y)p.0 + (1 - ¥)(1 - p)} qf;ﬁ&%vmﬁ Ek

U(B,8) = PS5 + p(1 — p)v + (1 — p)p.0 + (1 — p)2% D D= Vg 45
= U(a*,B) — U(B,B) = (c/2)(v/c — p)? > 0 whenever p # v/c "'WW‘” opnalifion

Bxample 3 : Stme games howe no BSS

LA 2 C laim a"=(3,3,3) R tha s

-Isél ; l l,, -ll %mm;mb NE D onbd possible £SS

) ' 2 ? L

_ Ay Pute strategy o - DIa,00 =35 DI, 00 =2
hil  1,-l S.Lt-; P ool 1% b:s'i’ MPQMC'['D A

A

7
C

Condihignal Shoitegies
One ach to olefining ESS for asymmetric games (3 to
‘é“mm%' the gw/fe, " for o 8

Comwidet a twoplowger game C (ot necessartly SYMMetT) .
Vit ) = paoff to role 7 whon role L plays o and role 2 plays 8
SUppOSL The &x amte probability of being in each role 13 =
Y= (V. V) - conditivnal strategy portfiliv

Define The 10~ person symmeAtic qame with pougefd funchivon -

| ;wmoug T, (TN = 3V N B) + 3 s (T )

A% e yp AP Bm ESS.
Pl ov YLy Horv
w v 2,2

propesition s A cenditionol Strofesy LV, Y 15 am BSS i ound
N oy If T 15 o puke striet equalibrivum of gowme C
3 L S 15 om Bsh of a, cyrvweinized game
S @ q Srivh NE in the oHginal game

pl: tow pi:col
p2: ol P2: row



The Replicator Dynaumiv
Let G be o symmettiy wo-pesson game with. m ackvms
Poyoff madrix A= Qi is mx m
04y = pougdff o mww&mmw Pl 5 and column playe §
Ntk = mammber 0f individuaks programmeol to play aohvon di at time %
- ib) = S5 ) = totad mumber of indivioluals o £
= Pilt) = MUY I nah) = proporhion of prpuloction plouping activn v ait Arme 4
T = owerage paupolt o o3 planer = 333 iy Py
Buolwtovauny Process, -
MUY = PALE) £ XWGU) TRUD = YA + ML) Zp%) iy PRty = itk U+ ALADT)
, wte X = scale factor Lamall) that olopenda om time Lemgth of pertvols
S pitny=nbt+ XI5 [powd) T3 b ]

= ety + Uit) Sy Prlh) Rig Pyt = net) L XpAP)
swhare pAp i The growth rovte of the whole population = pouofs of p ogoanst Ttsekf

pivked < HEHS- - HABUSTIDD. ~ pivt) +Pivty (TAPY - PAP)
Pi = A%;%‘)_ = pitt) - pitt) 1) > aweage pongolf ameng all strafegies esseintiodly
> Pr = Api (LAP)i- pAp™)~ — Replicator Eguerhion

M plaging 7 7 |
DT e (19 i, o gt st ot s g

H 12 thue are onhy 2 oo . pl h _ eld
3t v oy ST, 1 ol ka1 sl o
= PU-p> (AP - TAD))
mrwition.. $ttatequ L oloos better -than the Lovtion. average | 5 -
it betfer eﬁod’mwa popwloction awerade If amol only (f it dpes

BXIW“('?/‘ | & b » Pivtwe of olynamits :

a |l 22 0.0
b 0,0 1,1

heovtor on: b = PU-P> (2p-L-P) = DU-pIL2p-1
M)— o G55 % Mnm;hﬁw %’ra)rle Jw #\E, rez;»h‘m;e, a)(ﬁyw\/uic
Example s prizonast Dilemwmon
| ¢ D, whue C=Covporate, D= oefedt
c ‘ 3% 05 infinitely repeated Privoneré Dilemma infwte sirofegres
D| 30 1Ll Foor on Hiree s‘i’rocrup‘u‘ :
ﬂ Wmm’éaf?&c fo: covpurovie wncenditionally

0 s t P

infy 1< D: olufect unonolitionally
;;balg?l_l‘f;vgﬁ:qi) T: ctourt l)"j vaawﬁy\%‘ Duﬁa edt ‘:f WP iz 0[[@”&&1‘60(,
Ve o7 in praniows rewnal. pthurivize wv;maie

cl3s 0 35 In eadh ehowntor between the two planers -
D| gls 1ls 4+1s Pyt rownol. OCUMs -ﬁ)T‘ swe
T| 2ls 151 3/s f Bach swbbequaunt rouma. OCLuNy wl’H«.pmbabfhm -§.



Replicedtor Pynamte in Infinitely Repeccteel PD

If thoe s a enlicdentty mgh proportion of
iplwgms imH %nﬁ- mon&m procesy
Lonmerges 1o @ mixture of T-amel C - planess

Ofherwise . comverdes 1o all D-plawgers clikely)
Romolpmntz> in e Infimtely Repeatedl pD

I m from o gtven interachivn are Vorable
2. ing I 0ot perfectly wniform
5. Nwmber of

cuildien 15 variable

4. Muctodkions ocor .

Resubting procest 1y & stochasht dyramical gystem
&) When the popwlavtion is lowge these sowmtes of neize are small

in the au afe, and are well- approximated. b al
ot yoniable approwmated. by & Mo

Best Reply Dynoumits  gfuchastiv siobility
Framework : 1. plowgess fom large popwlastivn, ramolomiy matched,
in pauts Fo playy symmetric game .
2. eath perivd o rowolomly chosen plarer (s allowed
o Mmde thull sttateqy .~ who chooses oL best repponse
agouT e cuhestt dietribiition of opponents.

intHion (absorbing states). nevet feave once reach

Sfochastte Best Reply Dynauwnts .
f Chovse o best reply 1o the oli¥tribwhion of opponents. pr=/-€
Chovse ou Non-best teplyf, Ppr= ¢
- Long-Tun hehawior cloesht olependl on indtiol conditions
probability Thot - people owe playing strategy a. in amy pehbd converges
Yo o comstant TTe, T i also the Long~tun proportion of pervols ¢ people ploy @
(fbilows om Heong of Markov Chouhs )
2. ¢ small > most time heor pwre eguilibriac Call plawy o or b)),
mistokes Comse 1o mowe befuween occasivnally » a hardes fo escope-
(a,0) R the Wnigue stochashically etable equilibrivum




Example: the Stag Hwnt Rk dominance ool Equilibrium)

I R S ($,%)- PW’O&OWW %ffdltﬂ0;|1 Stoall R - 6;'
PR 2% 40 (RR): Rizk Dominamt Lost for ol Rt ol s < @

s| ot S shodhastivally stoble Gutone O 30 K i of vachn
Ris best rephy i poF. S i best reply i p<F 8 | R
(Al R has e larger basm of attraction) ’ T 1

The ridk awmm eqmubﬁaut;a Is it
Yhe wnigne stochast stole L brivum
Lif the gg;wlwh‘on B%) popu%n came fr row anal ol

Relotioneiup between E6b amol RD:
«p=fq>;r tote if § >=0)
5 a stode If §pr=0 (p=0
i 1;;7, a 91%% sfeady sm;)e w&u\?w We're ear b, we stoy near
p s asymplotically stoble if whwnwer were near p. we end up ot
b

?

- Bvery NE P a sleady ¢lafe of RD
2. Bvory ¢loble steady clate Rp i NE

3. Bwowy BSb i a asymphtically stable cleady state of RD
(B%5 1> robwat With o(n‘s’fwwu‘gmw)

RD omd. Markov Choun -

Argue that the only absorbing states of the process correspond to the pure strategy Nash
equilibria of the game.

>\ state & we cam comstruct a path sp Hal f ends wp at om
abzorbing stale Cpust wont Long emough)

Mooy Chavin Glochativ. sonlity -
R (2 wotiving 1 stolle. cpeople. ol mistake)

/R‘ v\ aﬁlsevrbivg “Stable” = stoy For along Hime
stofes



Weeks b -
Lnformation [ramsmission

Repwiohon and Stackedbers pougof?
Chaop Tk ( Crowoferal - Sobed )



gi ng qames . Proving wio e
MM’,‘&,L bmldmg ; pzéﬁwu W;mwm You ate ot
(o (ong M Plager With commatment tupes)

COMMUNLCORIDN, . how To Comwince o Lixtener with o. conflict of inferest

ot
Aristotle in Mﬁ%c&ww iolontified thiee meams of persuasivn :
&% ¢ logos (appeol o ewiddunte ancl oleduchivn) : persuasivn. games
Bk imﬂs (speakers creddbility) - cheap talk gomet finFd
BB pathos ([Bleners emotion) . ot aware of gqamet yet

QL{JMMVn

A sequence of short-run players (Et, t = 1,...,T) to play against a single long-run player (I).
Each Et decides whether to enter (In) or stay out (Out). Player | chooses fight (F) or
acquiesce (A) whenever Et enters.

All earlier actions are observable; the payoffs are below.

ErfE4E V it T, e unigne SPE by backwarl
o (1.9 induction 15 (In, A)
out F But : wonld enter as £ if I fought
0.2)  (1,-1) B and E® before you? f

Suppose that | is either “sane” (with payoffs given in the game), or “crazy” (commitment
type), always playing F against an entrant.
| knows whether he is sane or crazy, Et does not.

Penite the belief of € that I R crogy by €*.
§*>0 1 the privr probab! 1 being crazy.-
f PBE Cheliefe o};ns%’rwt mﬁ@lgb, % the ?xpwfeot probabiley
of L being ootz ot -the beginming of &loge .
Final the wiMue eqUilibriwm. LPREY working baskiwaroe (aseime T=2).
if & entere then Sane I plasge A, crazy lflwdsr—_
B> antery whenaver & -0+ (1-£9-120, that 5, if £72%

Working backward, we now oleterming PRE at -1, ‘

Cloimd. if €'>3 . &' ploss Out; howeder, i E' comes In, then plager I ieplick with F. In either case.
& =¢', and g0 E* Stays Out.

Claim2. if &' 5 awol &' ploygs In then the sane L mixes F ool A ot t=1.

Claim2: Swppose €'« % amd &' plowgs In. 1f I ploye A then, o t=2, £* plowg In. If 1 plowge F then
£> mixes In with probebiliy 3.



Irdwition of the cloums - \ /

1. Some L nmst wet imatate MW%H% 100 pesfectty .

igml Ployge F witte probodn 1ty 1 ke tha Cheivy Yype oloes) . Hain plaging F
os ot bul ammm:ﬁ%r ChOzineAL .

2. When same T tutoifes the crady type ad t=1 ¢ F) . Hue ot
wewlol et ceter B* wﬂ'PLProb iy 1. because P'Wm“law wondol ke
Tempted v overuse the dute . B

Complete the dertvoctoom for glet,

- Some I mixes ot T=1 to make E* hdifferesit befween In amd Ont.

Let ¢ be caine 14 prbability of plowptng F ot T=1. By Bowper' rinle .
¢'= Prlcrazyl F ot t=1) = ﬁlw%

B> & (ndifferent befween In andl Ont i €'=% .
Hente 1 heeolbto set 4= 2

2. 1f B enton then craay I plows F at =1 with probability 1, amol sane
L oloos the same wet probadnltty -
The total PTDbm’bl'lﬁ‘ld that I plays Fat t=1 Is. £'+u—£‘)1.=‘|1§.'
> b plans Out iff thiz probability exweds 3, thed &, ff &> %

PBE of Choun Store game with. reputantion , T=2

q
1+

q=PrFatt=1) I imitodes ype crody to buidld reputuifivn

112 1

| m= Pr(in at =2 (InF) at &=1) B mixes sﬂuT% In amd Ot

0 E'istays Out 1
1/4 1/2

Chonouctesztits of -t umigue PBE for amy T>2.
L E slogs Owd 8 €'> 27, Whith guos o Dok T >0
a.1f &' comas n, I plays F with. probobility L i &> ar
3. For all t>1, if T hat fowght all earlier estframte then B Slane Dut with posifive
?wbmbfhw,.l 1 enp FIWWLA'W’V‘ E* comek T for SUIE -
—— L ewer plows A then b will play A frow then on. Btiwrwize he Keepe plovping
F with positive pwbabilr'm.

0 =12 (Oug) U flwretons T=Y, g'e 0
T T LIS

“(/)‘lf’, I8 ® As T — «, the average payoff of the sane,

| A Out T ~ long-lived player | converges to 2, as if he
o // x\m & coulq c?r.edibly threaten with F .

L (I, F)N £ (F)=1/4 = (m’.q") Out 1 P933|blllty of “crazy type” alloyvs I to ‘get

£=05 (InA) . "s  his Stackelberg payoff. Same is true in any
(”"PM%\ Oi 1 game between a long-run and a myopic
T

player:

* ¥ .
e=0=(InA) &=1/4= (Ind) ¢&=1/2= (m*'A4) &



Theorem (Fudenberg and Levine, 1989):

If the long-lived player (P1) has each possible commitment type with
positive prior probability then in the unique PBE of the T-times
repeated game against short-lived opponents the average payoff of
P1 converges to max,, uj (a1, BRx(a1)), where BR>(ay ) is the short-
lived player’s best response function.

Crowoforol - Sobed creap fadke goume
Vince Crawoforol omd. Joed Sobel ¢1782):

1. Nature picks random state 6 € [0, 1]; P1 learns 6, P2 does not.
2. P1 (he) sends a message m € M ; set M is rich, e.g. contains [0, 1].
3. Having observed m, P2 (she) picks y € [0, 1].

Conflict: P2 wants to pick y = 8; P1 wants her to pick a bigger y.
Formally: u2 = -0 -y)2and u1 =-(0 + b - y)2 with b > 0.

Application / interpretation:

P2 is prime minister, P1 is expert;

P1 knows optimal policy, 8. P1 has known bias, b > 0. (Ideology, self-interest, etc.)
Advice has no direct payoff implication unlike in signaling.

iLhriwm PBED-
. PL's strotteqy i S 00,11 = AUW) = mix ouer M
2. In equilibriwm P2 teplies by Satmy = ELOI S1tp) =m]
3.818) 15 O MAX BUA M's MOXIIMBANG = (54 b— Slm))”

Messaget amd. Induction .

We say that an action y isinduced in state 8 if some message m with s2(m) =y is sent in
state 8 with positive probability.

An action y is induced if it is induced in some state.

Messages have no meaning; only induced (re)actions matter.

Theorem (V. Crawford and J. Sobel, 1982):
In any PBE the total number of induced y actions is finite.



Braumple - wniform 8, fwo nduced achne
Y’ y*

p + ;ﬂ 0*:*'0 ¥ i 0.y
Eqwilibrivm ' 15 induceol in states 9< 9% amol achvn ¥ ok 8> 6™

P2’ hest respomse - of'= £, = LA
p1e rofhbnouuﬁd 6"+b = —2"—‘4—

> @%=22b . Twoachon PBE i# be
Proof Hhat the naumber of induceol achion ke fmte .

In state 6, player P1’s ideal point (reaction y) is 0 4+ b and P2’s is 0.
Let y’ < y” be two induced actions and let 0* = (y’ +y")/2 — b.
P1 prefers y” over y’ if 6 > 0*, hence y’ is not induced in 6 > 6*.
P2 knows this, therefore in equilibrium y’ < 6*.

We conclude that y’ < 0* < 0* + b= (y' +y")/2 < y".

The distance between any two induced actions exceeds b, therefore
there are fewer than 1/ b induced actions.[]

[ ]
1 y T 0,y

-(0™+b-y)?

DRSO
Talk > cheap , et (F com be |

f tely mawy ggm‘%, but o Wﬁm‘mﬁj mawmy Madiceol achions
(greafer biak = foner actions Cam be mabmpt i equilibMium)

Ex ante, both players prefer equilibria with more communication. (Expected quadratic loss
= “variance” is smaller on a finer partition.
Is this a good explanation for polarized/ simplified/ brief communication?

Directions puremgel inthe |iferfiue
) verfioble mesh
' mmmmjmg (ot aumac?szaw/a‘)

If 8 is provable and P2 has an action that all P1 types dislike, then there is a PBE with full
revelation: the highest-type P1 must prove himself, all lower types compelled to do the same.
Falls apart if message is observed with noise.



5. Commmmicachon. ener mukiple 2sneh
Mukti-dimansionad gtede, § = (8- Ony with 35 Be<1
Comparative equilibria exist in which P1 reports a ranking of dimensions (e.g., “61 > 63 > 62”)
but not the levels. As n — o this amounts to full revelation (Chakraborty & Harbaugh, 2007).

&aW\L‘. {. NW'WN— P]\f/kA &, "'[9{1 é [;O)l] . d,l?;h‘{b)/ﬂ?ﬁt fo.d.
f:z. PL sends oo MeAZage M € Lo, 11
3. Howing observeol m., P2 (she) pitkt Y € Lo, 13*
Powyofs W= =S (Brtb-We ), Un= - 35, Bk-Ye)* 5 b>o
> ;ﬂg 15 omall then PL ol P2 eam commumicate view fimtely many messages
ng each oimamnsion via. Cromiford & Spbel

> No informative  Crownford.~ Sobel. partition equilibrium’ i§ b 1s (orge

(0,1610,+b)

Proposition (Chakraborty & Harbaugh, 2007): For all b > 0, there is
an equilibrium in which P1 induces y = E[(61,62)|01 > 6] if 61 > 62
and y/ = E[(61,602)|61 < 62] otherwise.

3. Commmunicooion wrth. maitiple expurte
> hardy Br experts To bias decizivns ( Bodfoghini 2002, Awbrus & Takahashi 2997)
G 6 1 Two experts UpL, p2> kiow the mubhi-slimensional stoite, pe @ cRE
Ia. pL cund P2 @z‘mmh‘a}/wmﬁl% sand masbages tu, W & R¥
3. Receiver (easion aker Po) éefe y e RE
Iduol reaction of P0= %=0 5 the experts hawe kuown binkes
How nimoh. does PO gaans by Companng the experts’ reports 2
Let Bio) = ¢ye RE: brpert 1 prefens i v O in stodte 63

Theorem (Battaglini, 2002; Ambrus & Takahashi, 2007):

The cheap talk game with multiple experts has a perfect Bayesian
equilibrium such that y = 6 is induced in every state 6 if, and only if,
forall §’,0"” € © there exists y € ©® such that y ¢ B1(6") U B(0').




Example - Three-way allocation of o busdget
(Expert 1 biovseol towaude Politits, expert 2 biosed fowouds Philosephy. Bi®) 2 the
go{,’%gpvllu%ﬁ\ﬂ(}t'i p 'DD'f'f’w_‘PDhuJ Y=6 n state @)

To get Hhe. tuth from the. experts .

vsktble I VO 6" e®, IYE® sib.
¢ BigH U B2,

If 0'=6". one of them is Lyng.

PO can pumizh both witheut knowing
ot fying by, seting 4 ¢ BuS) U BLE)
Atternodive - ask PL the conect, <plit
betwean. Beon avol P and. P2 gvout
« @ (inaction) e pht between Ecom oumol. Pol —hefthur
will Lie, You infer .

4. Commmmicachon oper hme ack agan and again 5 Compeur ieporfs with eardier ones
£. Commitmant and olelogootdn. py chesses v oliectly 2 P2 oommit to y as funohion of m2




Weeks 7 -
Auoction

Auetion Tormots % Beuilibrium:
f Coné Gamus - Winners Cutze
Wollet Games
Auctivn Design . Case Study
Bﬁ{ dauni Mechammzm Desl



Common. Aucton. Formars

1. Fst - price. sealed—biol Auction

- Bidders gimmitancousty write down thor *best-and-final’” bidk

— Higher bioldet wine the object ool powg the biol, He wrete

~ ¢.q. oi, mingral rights, real estate , constTuckion., procutement corraets
2. Dutch Aucton

- Price storts Myh and gradually folle witid one bideler agrees to bwy the

gﬁaw ot Ghe g&u. g f e ad "
- eg., Plowers in Holland, some fish amnd agricuttural products .

Abvve ane the same game .

3. Japanwse Anction (Asnding Auctin)

- price storts Low and gradmadly nueases umntif b .
- m{b\uf bidoler then mmgmwt pcfmj;:jom bid WL oy one. biddr Laft

Comt Game » the Winners Curse
The Cons game 1" Common Ualues”:

whe actual value of the prize 1% the same for all bidolus, bwt differest
biddure have wﬁ’% ggﬁmad% Qf tu uﬁm ff

Suppose bidoers act on if the value of the coink (> Hhair estimedte of
the vadue before any information is revealed by other biololers behaurvunr.
— Thenthe winnet (5 Likely to Gowe pordal top rmch.

lfwhﬁn,m probokly fad. fe Gughest ettimate.

Yow showlol dstically shade yowr bl below your mittal estimate in thiz, auchbn.-

Wallet Game (phone nmber)
(Pure Common Ulugs . Agcendling Auchon) IR
SHM WLU(T(\C mubnm H Type z; of pla;er 1 ;uits at pri(I:e Z i— zy =279
— e.g.z; = 900 bids up to, an en quits at, price =
Tg?e il %ﬂ;& aI SGLWU’. PH\CQ/ ab OPPDW —W Z;= Z\ - e_g_ z; = 030 bids ug :o, ang ::en gui:s a:, grice éggop( o
Type 21 wins ot het Wﬁ’l\’\g prite, bz, the Question: At price 60p, z is at least 030
ype the Wl hawe beafen 2= cloe 1o 21, oyt eget 80 O average v, o 60p
= Tupe 2 Pl 1 s ot prce blzn =22 Winner's Curse!
HPZIRM %Z%?d‘:mbuﬁv% QF 2 and. Z. - If zy = 030 wins at 61p, then v; < 30+ % = 603

cpwre. Common Vadwes - Sealeol- biol Auction ) |
Those withewt m@rwwtm: ghowlel biol 2ero

Those with iformadion . olepencls on the distribuhina

eq- if &% ase | ond. Lk oliztribwtedl on Lo K1, for amy Ko,
! g«m, in equilibrium . b v mréw P



(Asummetrte Cose Ascending Aucton)
fPﬁZe» & Vi= 2t & 1 if Bioder 1 wing
Prize Is Va=2t% i§ Biololer 2 wing
2 Blololer 1 bid $2 more than before

If che v at prite P, she infor 2.= pl2, = 2+ L1
So she WL biol untid p=w > P=2z+2

> Bidder 2 quit £2 earier than
Now if bideler 2 wins at p, She (nfore 2= (p-2>)2
So her VoL V= (P22t 22 =D > P= 222
> Bidder 1 bid £ wore thom before
= Bidlur 2 guit £4 eartior tham befbre
w = Bidder L newer quite. Bidolur 2 quite bidding ait price < 2.

Polat Caser, f Bidoler Value
1- Common oudues

— The eventual value of the object will be the same for all bidders, but different bidders
may have different estimates of this value

— Each bidder’s estimate of the value would be altered by knowledge of other bidders’
estimates

2, PHvote Voliws

— Each bidder has some value for the object (i.e., maximum price she is willing to pay)
which does not depend on the information or values of other bidders



Auction Design : Case Stuoly

blems in Auchn Design -

1. Collwston | Coprolinedion  (mduding auctineer)
a. Entry Deferrence

3. envpdt 1o 1 &2, reveal infwation
An amchvn (& et o market and. stamdond. econgmats appliee

Roverme Equivalone Theorem.

AU omchions W no teserve prite yield #e same expected,
bevenie o the selfer

Formal statement (Revenue Equivalence Theorem)

“Assume each of n risk-neutral potential buyers has a privately-known value (or
signal in the common-values case) independently drawn from a common distribution
F(2) that is strictly increasing and atomless on [ 2,21

Then any auction mechanism in which
(i) the object always goes to the buyer with the highest value (or signal), and
(i) any bidder with value (or signal) z expects zero surplus
, yields the same expected revenue, and results in a buyer with value (or signal) z
making the same expected payment.”

- Al ametione with, a_switable (pubhz) pesetite prte ielol the
mam‘m% J;‘a’vzgfbex o revesue for He \i"w%’
R n emhs, sl I’y ) woket
e kteronc i ot Rk vorg Jeuo bl priv tapically oy
2. Thore tesubts demt usnally opply i mor tham one object & soldl.
2. Ot cameots -
- owymmeri wollet game

DK 3G mobile phore amchivn

S mobily -phone Hcenses on Sale

Bidolerz ! aLLemoLmMoct mest 1 &‘mcmseu it only 5 ef
Ram (Simmltomedows) as Ng @Chon CpHes N 0

3 biolders enfered . roused by;g\s billyon = >P\x°/, Gnp

Cruciad details in UK ool Nethalandl cases

» UK auctioned 5 licences and UK had 4 strong bidders (incumbent operators)
* Netherlands auctioned 5 licences but had 5 strong bidders (incumbent operators)

Weaker compantes Gowe i inautive to biel wthe Netherlowols case .

- Detmaurk: sealed - biol auctivn suceeksfully (4 Lconses. 4 incumbend biololor)

- Awsttiov: 6 bilder for 22 [ofe, AhlemAUNYy gMmfion Lollweion
fe)ddug permuitted to win >1 Jot each > afm[mmuj
Acking pHC t5e4 wintil biebl puk Br 12wt in totad




Wiy Asending Auchon rother thon Sealeal- biol Auchon in UK 2
Simmitomesma ascending auchon bikely to be efficient if com arffroct
entromts & praemnt demond reduchivic
) Bi weel fo win 1 (lcense only 2 wo <o oliwding epoils
%:WMHMDL reduction | cotimsion wofwgn majer w%zrgr ey Py
2.5 lltnses , 4 fnaumbent biolders. So at least one Litense goes fo eutromis
= Entyy ot & maer wony

Abilities Frme reguite fo cofhuole
I agref mm%e Mourket

. olefect o reesmont
; cteoibly pusizh maign

Buent badily-rum auehivns ake usually better than the alterrodives

Administrative Allocation
(“Beauty Contests”)

« Efficient: winners are bidders |+« Often inefficient
with highest values

Auctions

» Transparent » Hard to specify criteria
+ Speedy » Time-consuming
+ Fair » Outcome often contested
+ Seller gets most of value + Seller gets little or nothing
(without deadweight losses) 3G beauty contests: €2bn
3G auctions: €100 billion (7 EU countries, pop. 130m)

(8 EU countries, pop. 250m)

Northemn Rock Bomk. Rum (2697.9) '
Bomk. 0 Eﬁiw wamted to Sedl muthiple Types of Loant to commertial
banks, building souetier ( Type = quoity of collateral used by burower)
® G-month Loows agaunst *poor’ collateral , e.q., MRS
@ b-morth Loans o@ouvt “gend” cotlecterod , e-q., K gevemument bonols
Total allocation = £2.590 mullion
1. Not wming a separode anchon for each Yo
Maricet pm%r, ﬂm Compenion if sepoukatfe %cﬁbm



2. Not rumung Simuttomeovs Muttiple Rownd Auctbon « SMRA)
(at pioneeted by Pamd Milgrom amdl Bob wilson)
: Toce fo0 |
Bt t m ol wmm | predatibn
hadd. o allow the mix of varteties solol 1o olepenl upon the bisk

Product - Mix Auchbn
O Bioldere for cpectrum Litenses are oligepoly
= ot & (DUMAVR | coprdinahbn ane Lst order (35ueb
—— use gome Huong modele | inaghte
@ potemtiad biolelent {or [oama in UK
> & collus\vn | covrdinotivn not 18! orolur Reues
> ook on malavzfg bidoling easy amol effeiont o exttvet Drfbrimectivn
owdl. (rmplerment compettive eifcome
—— e competihive moolels | insghtte

o : ¢ 1- eath paurtiupautt Shmutomeonsly stotes preferehca
Product - Mix Auchivn { O e bt s ot ‘Plemm of

mlttple olifferent atid. govels
a. implement compefitive equilibrivm allococtivn

1. Auctioneer expresses preferences as a supply function Pr{'ce/
- e.g. Bank of England can “bid” this: (wwgﬁ‘h\m market)
Interest-rat supply function g .
remium for V 1. Bob PR'MTWMMA
poor collateral I"f'& $MPP-U4 oumMNe
% poor collateral accepted ? 2. DW/WMA_ I -fmlM
. ! ! n,,l b]‘
2. Bidders express preferences between goods - D
— e.g. potential borrower can bid “(60bp,50bp; £200m)” to mean (NJG’hW)
“I would like to borrow £200m, and would pay up to 50 basis points using ~
my good collateral, but up to 60 bp if | can use my poor collateral (and at
lower interest rates | prefer to use poor collateral if rate difference < 10bp)’ A- i | l
3. Market power: low when all goods in same auction 1
bas value v poys pHLe .

Theorem. : under some conditions . the Produet Mix- Auchon achieves am
‘fickemt’ ablocahon. A1l biololens, amal the amctivneer, get exactly
ey wonld Gawve chosen oot the final pices.

—— Bidding is efficient, informative and eary
o) Another case maativned. in Lectute : Boosystom for Turtle Dover



E{’\-f\‘d@wf Mechamsm Design
- VCG Mechamsm : Efficiend mechowisms with, fronsfere
2. Gale - Shapley Algoritum: Stable mortehing withowt tromefers

EMD ¢ wndes private vajuet (Wi only clopends on 8 bwt ot 64
fmm+£mwne whlies !

Blements X of cet X are vourtous snciod olecizivne.
A U's whldty meacrecin moned| : Wil% BN+ P for ve N,
0?%? 1 type Lp%vzm, informaction ) %ot bi et fmﬁf receiveol
Is thue & way Yo cairy oub +he soclally efficient decizivn rule,
X9 = O\P{i)ma’(xe-x Sien Uit% ©1) for every state 0= (00)ien, withewt
direct iy pbsentng 5.

licostons - ametions (% € X olescribes who qots what ) '
A public grool provigion. Cbinany X shows if the briodge i buslt)

VCE Mechamism
Viekiy L1361 : amohvn), Clarke L1971: PGS . Groves 0573 gemerad)

Vickrey-Clarke-Groves (VCG) mechanism:
(1) Each i € N reports a type, 8;. Denote 8 = (6;)c .
(2) Carry out decision x*(8), and set i’s transfer equal to

pi(0) ==Y uj(x*(0),6;) — m;(6-)).
J#i

Here 71;(0_;) is any function with argument 6_; = (6;); ..

Each i receives the sum of the other agents’ gross (pre-transfer) payoffs in the efficient allocation
computed at the reported types, minus a transfer that may depend on the others’ reported types.

VCG with Ti(B4) 20 ig codded the Team mechamsm

Theorem: In any VCG mechanism it is weakly dominant to report

A

0; = 0;, hence the outcome is efficient (ignoring transfers). '



+ Rewrite efficiency of X™ ak follows .
me ﬁrm&ﬁ@:mf, £
VAL 007, B4, B1) F Taas UL U0 Ba), By) % ALK BD) + S Uy (X By)
In VCa. if i's owntype 1 B, amol her il the othurs’ reporte sue B amdl B4, thon
e poof: U (XL B4). 00) + S g X (B8, B By ) ~ T (Ba)
which 15 Mghett ot Bi=6i by the efficitns of x* ok wiitten above

Vicktew's Pivet Mochadsm (Nobed prize '9b)
Pt Mechamasm . V@ with TECB4) = MOX xex L7 U5 (X1 By)

Vicksey pamgmett : in oslocochbn &7U9) . plowger ¢ plows -
= D) = My Sy UL KB — Ty Uy X 1B), By
(the effeot of hur presomce on the wefeure of othurs)
Hence, 6 net parpff 15 het marginal conitibution.«
MitB) = Syen UgOPCBY. Byd - MAXxex Sy Ui (X B
Single whit for gale + Sevonal- prive aurotion Lwinner payt the Seconal~Mghest
bicl , 12 optal 1o biol Froethfally -

) . ¢

Vickreys amohon for K idlestical qooos

Suppose | agents are interested in buying K identical goods.

Each agent has decreasing, privately-known marginal valuations. )
Notation: ¥H>——Ki are i ’s valuations for kth unit. V|i7 N

Ex-ante distribution of vki won’t matter, hence ignored.
Vi

1. Each agent i € / submits K bids, say Vi > ... > VL.
2. Highest K bids (pooled, from all bidders) win.

3. Each i pays the sum of the bids submitted by others that
would have won had i not participated in the auction.

proposition - it 12 weakly ophnal for i to submit W = VE, vkek .

ObaeratTN - 1. the prive & wikner paas is wot the “ghest rejecteol’ o
Aowest winning' biols each ¢ o pasy oliffereit pies.
2. 7o biols dont offect how mmch che pargs. Onb whethor she wihe
3. Principle - poyy your externality tthe biols you crowolel o)

Bromple - > people for > apples.
A:8p.2p. 0 A powe 5p for het apple.
B:7p. bp. Sp B paws 4p+2p for her two opples.
c: 4’?1 0, 'b’P



Ausubele amction (@ reod-fime implementoetion
open-biol, aptending - price cownterpaurt of Vitkrey's K-t auctivn, .

> st

Price clock p is set to 0. Each i indicates her demand by showing at
most K fingers. As p rises agents may reduce their demand.

If, at price p, the total number of fingers held up by agents other
than / falls one short of the number of still-available units, then we
say agent / has clinched a unit at price p.

The unit clinched by i as well as i’s demand for it are removed.

The price clock resumes unless all units have been allocated.

Some known izsues omdl. et solutivns to VCh

I VCG requires privece valuadions (Wi wot o depend on )
Dasgupto & Maskin. (QTE, 2000) extendeol the tompuiorhion 0f Vickrey
powmunts to Interdepenclent volush'ons.

2. VeG cam be mamipWlated. by plowere oo.wwh‘lng (merging) or o

sgle player pretencling 1o be wo b mere ployers
Cellmﬁon ? proof woha)/w‘$mn§ Che & Kim (Econometricar, 200b)

3. VCG itsedf does not accommodode oynamic problems with players
ariwng & Jeawing amol swplws geneseatecl over ime . But see:
& Segn) (Buomommedrica, 1013: oygnamic teom mechoumism)
Bergemann & Valimaki (Eoonometrita, 1010« dynamat pvot)

Mouker Desigh for Martehung
Martohing amol market oesign

Typical problems:
match young children to primary schools
medical residents to hospitals
donated kidneys to patients.
Common characteristics:
Participants on both sides of the market may have preferences over potential matches.
They may lie to gain advantage. Monetary transfers are not allowed.



Motivating

exomple :

Allocaite K economice tutors (neao APs) to K Oxfordl collesps .
Bauch utor 13 able to townk the co. n astrict, transitive oroles
Bach (ilege has & sirivk ronking of the tutore

(Mongtony tramsfers ot odlowed )

Tosk « sloble painge estmblishment

(et fwior 1o be mafched to a college in SUdh o way That no-utor would Pﬁ? a
oiforent collage amol that” wenlol ako prefer him ever e ttor allo cateol o thum )

Alice: | N>K>]J N: | Carol > Alice > Bob
Bob: N>K>]J K: | Bob > Carol > Alice
Carol: | K>N>]J J: | Bob > Carol > Alice
o there o algorithm in which f tufors | colleges sforte prefencaces fruthfully

Suh Hhait Jeouwls v o stable matciung

Gale~ Shaple deferred, acceptomnce algorithm.

Start: Each tutor names his or her favourite college.

Loop: Colleges demanded by multiple tutors provisionally pick a
tutor. Tutors not picked by a college choose again, with the restriction
that they cannot choose a college that rejected them before.

The loop is repeated until each tutor is allocated to a college.

Round 1: A — New, B — New, C — Keble. New wants A, so B is not picked.
Round 2: B — Keble. Keble picks B, so now C is without a college.

Round 3: C — New. New picks C, so now A is left without a college.

Round 4: A — Keble. Keble picks B, so A has to choose again.

Round 5: A — Jesus, B — Keble, C — New. Stable!

ppestes:

1. 1 eveny participamt bohowes trathfully, then e

Gale~ Shaplew algrithm leaols 1o the stoble modching

Hhoot 15 optimatl Porthe slde that maket the imtial

olemanole (heke » tutor-optimad )
2. H fe dominamt strotregy for tutvre o tedl the futh.
3. If thre are multiple stable matdunge. them e teceiving

Slole (collegesy cam mawipwiate to pbtasn, their favorite puthg
4 If thure oke Iitiple Siable matdungt these's ho

stable matthing allgonitium that's tmposible o manipulafe.



Top Trodling Cycle (TTC) algorttm ( Dol Garle)

1. Each Hutor pointe their “top’ mest —prefemecl college (coulel be thur
own) . amol each college pgmls 1% %ﬁx‘r olefoutt tutor-

2. Lolowtify cycles: cany owt the sugqested fracles amd remove the
particponts . Ropeat fom step L ¥l done.

Theotem.. truth-telling is dominauit, the outcome 3 stable



Weeks 8 -
Repeated Games

Folk Theowm & Perfect Folk Theorem
vhation
Pt Repetition



Repeated Games in Practice

I Social nOMS, customs, tiveats, pum . oHativn and reven
2. modd tactt colimsion (QK/Q%P) ameng Fiws in an Industy &

Framawork: A stage game plowjed. a finit / nfnit number of Himes.
In penvol ¥, each 7= 1 N simultontously picks stage—game
strateqy Qi € Ai for stage poup@ Wia) € R, whoe a=(Qi, Gi)
Netoion - st ol ”
I Dowte player 75 stage-qame mixed by oli 15 expect
powprf§ mrwr\gﬂ% ggdam;t the ms’%ﬁg by UWi(ai. a-z?e
2. Denpte the state-game achvon proéile pl att by at=ai, - ad)
The m3toy of plom?wt tme 1 1% %D“f mﬁ%") !
‘ = L)1t Coliseownt - &)
Pe,;ﬁnghVn: o >
I eated game strafe rpl 7 specfies am achon (pure or
nmt?&) in each petiool t%a/foa, m‘on v@% ztony ait t. P
2. Poupofff - & - olizcoumted. prsent value of stage-game J;tzgoﬁ?s
nhare 86 (o)1) 15 The probabilsty of uﬁm imes the. olis count Factor.
3. Averoge Discownted. Value (AbV) . ADVE = 8PVt (clefinition)
- ADV NoWsIVe : ADVy = (1-5) - todouys + & ADVix
- for Infiwtive repetiton: ADV = PV-(I-S)
= APV of "v for k. penbds, theh V' frever”. (I-8F)v+ 8Fv’

imtupret 8 b Weight hete
Folk Theorem
Ponof conetraint 1: feasibidety
Feasibility. We say (vy, ..., vn) is a feasible average discounted
payoff of the repeated stage game iff

(vi,..., Vn) € co{(wy,..., w,) @ w; = uj(a) for some a € A}.

“co” means “convex hull”, i.e., smallest convex containing set.

- Ployers genatate such (v, V) via Publie randomization desice

2. Courdinavted. Cycling’ Oner pure mes of the & ame.
For m 8. if%mnﬁmw};f ﬂfmﬁﬁw @'W L =) can be gpproximatect
otbimrthy chseol n ADV.



P constramt 2: Inditduad Rationality

Plower 6 minmax pwﬁns Vi = N, Mgy Ui Coli, o)
(K all plawre other Hhanm 3 Coordlinaite On pumbhing 7, but 7 knows iz and gives s best
tespomse . then © gefs vi>

Individual Rationality. If (v1, ..., v,) are average discounted Nash
equilibrium payoffs of a repeated game then for all /, v; > v;.

Bcample - & contrbution game "
2 >
If Pr(P2 gives) > 1/2 then P1’s best reply is give = uy > 1.
If Pr(P2 gives) < 1/2 then P1’s best reply is not = u; = 1. Vv R fwhible P
give  not 1 AW
Therefore v = 1. give | 22 | 0,1 roivnal st
By symmetry, vo = 1. not | 1,0 | 1,1 fza/yl‘bla oot
u
0 1 2 !

Theee. commente on minimax strafeqivs ancl paroffs.
I+ Whoh 3 minmaxes ¥, ploer ¥o pauoff may be Bkt Tham Vi ‘*)fk;;a””"“% chrategy

Cpunizhing others can huut more thoun being punizhed 1) mimmizes plager 3%
2. Minivaxang) srorfogivs mowj be mixeol . Example ratvhad pogafs
Matching pennies H T
vi=vp;=0. H[11]-11
Minmax by (0.5- H+0.5- T) T |11

prev§: (coincide Lower amol upper bownda)
f P1 cam holol P2 0 0 pouff by PL mixihg £-8vh. o La<o
P2 coun guaromter 0 pompeff by pa mixing Fo-50% , S0 Vo 20
> Henee V=0

Fork Theotem for Nash Egualibno,

Folk Theorem for Nash equilibria with co repetition, discounting.
If v € V* then thereis § < 1 such that for all § > ¢, the co-repeated BMT VM‘TI' Cfﬁd/ﬁ ble,
game has a Nash equilibrium in which each player i’s ADV equals v;.

Proof. For simplicity, suppose v is generated by stage-game action
profile a, that is, v; = u;(a) for all i.

Proposal: Each i plays a; if a has been played in all previous periods.
Otherwise all play to minmax the player that deviated first.

If i deviates she expects at most v; (her maximal payoff) once, then v;
(her minmax payoff) forever. She won't deviate if

v > (1*(5)\7{%—(51,- 0> (\7,'7 V,')/(V,'—K,-).
Hence 8 = max;{(v = vi)/ (% = v;)}. O So that wobody wastil To olwiade



Purfect Folk Theotem
8 ? 2
N];’D%% m conapt in repeated, games becaure i allows

ol
planre 1o W%M afe not credible .
EXCWWP]&: Example:

vi=w=1

[Note: P1 minmaxes P2 by playing D.]

Ik Thootem. sugqests hovofo <ustain (UL In o NE of the infinttely tepected. game- if & iz
Zoose-fv 1. 1 P2 olwiofes . PL "pumsher” het by le%i\q Djbmm%— mﬂrc,w,aulnle,l_;g

More tearproble : Subgame Perfect Equilibrium (SPE)

— plow NE M eveny swogaime , even in the comtinuahvn after a deviatipn,
Subgoms : Continmodivh. b
¢ éraaalo game . ot ¥ ki

But: playing stage-gome Nath at eveny £ % of cousse SPE.
Theorem (J. Friedman, 1971):

Suppose v is a feasible payoff vector such that for all /, v; exceeds
player i’s payoff in some Nash equilibrium of the stage game.

For ¢ sufficiently close to 1 there is a subgame perfect equilibrium of
the infinitely repeated game with average discounted payoffs v.

I “Grim Trigger” in the Privoner’s Didemma,

Prisoner’s dilemma: C D WMW NE Of the gm%ﬂ QoM D, D)
cl11 12 Hente + (D,D) in ewseny pertval 2 RPE for
vy =vp =0 D[2-1] 00 oy repetitivn, amy §.

Infinite tepetitivn: Any feasible (V=) 2 10.0) B In SPE for high §.
—In Pam‘wim, Wi )= 1% be swstouneol i SPE Ffor § 7 = -

fplm C at t=1 and ar g A& both plowjers hawe plaged C.
i someone plaws D, play D fom then on foreuer.
(oloesn't olusiate iff. 12 (-8)2, le. 823

Clver Tool [ motoction - Antometo,

Antomation. - _

Liep tochyI not C, C boxex - :ﬁmiﬁvm
CC D,D
VvV J



2. Ore-shet Dewichon Prnciple ol ¢ o
A proposeol. sitad ile & SPE i only if, ho
mancon-hVe v o(:u%ﬂatz am s’l’a:fe‘fl:o&il% eb&#vdtg mmmna.

Theorem (One-shot deviation principle):
In a repeated game with discounting, a strategy profile is SPE iff the
following holds for all histories, all ¢, all i

Provided all players other than / play their proposed strategies at
and after t, player / cannot gain by deviating in period t and then

reverting back to his proposed equilibrium strategy from t + 1 on.

Proof . 1. BoHom fine > thart thete’s ho needl to check complex oleviodions,
2, Howener, we mukt check. wmlateral . oneshod devicshbie in
oveny Contimaibn or subgame —— eseny state of automation

+  Suppose towards contradiction that player i’s repeated-game strategy si cannot be
improved in one step (at any t, after any history ht), yet i has a strictly better strategy si’
at a particular t and history ht.

Due to discounting, payoffs far in the future make little difference. Any gain is less than
A in present value from payoffs after t + TA.

+  Therefore if si’ increases i’s payoff (from that generated by si) by A, then it should do so
in finitely many steps (within TA periods).

+  Let’'s suppose si’ which improves on si by A in present value differs from si for some
histories at t, ..., t + TA, but it specifies the same action as si does for all histories
from period t + TA + 1 onwards.

+  Consider strategy s’’/, which agrees with si’ for all histories in periods up to and
including t + TA — 1, but agrees with si for all histories from t + TA onwards. (So s’’
reverts to si one period earlier than s’i.)

« Inperiod t+TA, after any history, si’’ = si cannot be improved by a one-period deviation,
hence s’ is weakly better than s’ from then on. Since s’’ agrees with s’ before t + TA, it
is weakly better than s’ at t.

«  Therefore s’’, which deviates from si at t for only TA — 1 periods, is strictly better than si
in period t at history ht .

+  Repeat the argument TA times, each time shortening the duration of the deviation from
si that improves it at t, history ht. Eventually we get a one-period improvement, a
contradiction proving the claim.

i i
+ IT'I'TA -, t+Ta ; t+TA+)I
| — Si', desiate € Uh, $17a]
: i, olenlede € [, t+7a-11

i
Si"? éi.. gi'll> SI Cm‘) ]‘W\?T‘Vl’& b]d /8 one- wﬂ)d' dﬂ)‘l‘ﬂj’lm“

fime

-



Checking fbr SPE .

L R Two pure, one mixed Nash in this stage game

U |6
D|73]-

w

7
_E How to sustain (U,L) forever in SPE of the
infinitely repeated game with ¢ close to 1?

First. consloler the propoccd. - Ul 5 et PR (in UR), each woubl olewiate)

£ X on-patic i8-8
m om-iahm Maﬁ‘vn: 2-8- &= Lmorel)

—_

’

VRS
SPB ‘\ﬁ]T 6 CA/OQ?/'fD 1. notU, L > gPE ' CO, LY
(8"%) o L \ A‘t’ L) fW—Pa;ﬂl/ b-r bs+ & v~ > 6»‘$—

IR N offpaths 78468+
TG Arom footle it oy g
SHHUt - conrob pseol o grimL NGaer)

punizh Mm(f? jgr a l(‘wamo( TW?%

tetwin to covperaetibn

Perfect Folk Theorem
Fuolenberg & Masken .

Theorem (D. Fudenberg and E. Maskin, 1986):
Assume V* (set of feasible and strictly IR payoffs) is n-dimensional.

For any (vq,..., vp) € V* thereis d € (0,1) such that forall § > §
the infinitely repeated game has a subgame perfect equilibrium with
average discounted payoffs (vi,..., Vn)-

. Dimensionalihy conclitton: We o 1o be able 4o pumish duwiators indinduolly,
S0 He ¢tage game payo@s need o Vory indapendlonity’
AUVY plomers.
2. Noteton before proog:
- Lot V= W~ W) be Hhe POM that we want 1o SUPpOrt jn SPE n Hu
infindfely tepeated game. o .
~ Let the shotfeqy profile thot MANMAXes 7 be M= (s, M)
Nowvalize payofs so Vi = Witmi) =05 howewer Witn)z o
- Damste w6 maximal powe in the ame by V.
- Ptk w that 1 wbl‘}fle/ ond. chu/agz 2 .
Let T be siuch that Twi > Ui for all 2.
= Let 470 be $0 Hhat Wi = (Wi, W-i+£) 2 V 15 feasible For all 4.
(that B, Wi =wi. bul W)= W3tE fr all 7 and 3#i)



Iwstrachon of the Netoshon .

2
V2 (
10 “(7772) VV’
ume ~a ponprfs when ¥ 1% minvaxed

3. Consichivn of the Equilibrivim
I. Collaborachion . ploy stage game actone hat ates v, uhlers
A et gt v f i g
i, Puvishment - Plowx Wil (winmax ) for exacityy T pertods.
fmj’ no one dawicites ﬁmgpfo phase. T
¥ plower & dleviates then gtout over phase I
Ti8. Recontilatiuh: play stase qome achions that gonepate 1w
I:e;ivr auﬁega plouges & dw»ed%n‘%\m‘r care go 1o phase Tk,

V73 uz
P2 deviates in phase II!

P2 “rewarded” ' ; o
P1 deviates “ 7
® 5
W L .\ P2 punished for T periods

» U4

; u(m?)
u(m’) Pl pumshed for T permds u(m’) ¢

pL durodes i Phase 1 Pa oluwodes Th Phase T

up y
P2 deviates

- > Uy
u(m')4 il

p2 dwiodet In Phase 0




4. Formal Prov§ by one-ehot duriochon principle

Phase L Player i’s payoffis v; = (1 — 67 1)y; + 571y,
If i deviates then i gets at most (1 — 8)v; + 67 1w,
Which one is bigger, for ¢ close to 1?

1=y, =(1-0)A+6+...40T)y;

>(1-6)Tv;> (1-6)Tw; > (1-9)y,

where the first inequality holds for 6 near 1, the second inequality
holds by v > w, and the final one by the definition of T.
Since 67 1v; > 6T+ 1w;, we find that

vi=(1=0TtYy;+ 6Ty, > (1-6)v; +67 1w,

so a deviation in Phase I is not profitable for i.

Phase II': While / is minmaxed, he cannot get more than 0.
Deviation only postpones the end of punishment, not worth it.

Phase IV: At its start i expects (1 — 7 )uj(m/) + 67 (w; +¢).
With K < T periods left this is (1 — 6K)u;(m/) + 65 (w; +¢).
By deviating i gets at most (1 — 6)7; + 07 1w,
Player i does not deviate in Phase Il iff

(1— %) ui(m) — (1= 8)v; + (6K — 6T )w; + 57 Le > 0.

As 6 — 1, the first three terms tend to zero, the last one to ¢ > 0.

Phase III: By conforming player i gets at least w;.

By deviating player i gets at most (1 —3)v; + 67 +lw;.

As in the analysis of Phase I, for é near 1,
1=0TDw=1-8)1+6+...46T)w; > (1-08)Tw; > (1 —6)7;.
Hence w; = (1 — 0" Y)w; +67Hw; > (1 -96)v; + 671w, and so a
deviation is not profitable in Phase III either. [

Toke- Aoy On oo - tepetitivn Folk Theotems
1. Ay feasible and mww rochional p. cam be sustaed, in
SPE of the indefinitely - repeotied gqame for & suiciently close 4o 1.
— Perfect Folk Thuwiem ( Fuolonberg % Maskin , 1586)
2. Thiee key observactivns :
creclible pwimshment need. not be *Nash iersion’
[ Forgiveness - pwnishmaent need not Last forever
Reconcidation . worse for the olevictor, better for punishers)



Renegotiovtion

Critictsm towonde 1epeatedl game SPE with punishmeit phasesr .
Both players are worse off at He beginning of a pwmshmeut phase., so
thayy mowy want bo tenegotiode i4.

—— Colloborative tepectieel game that not only subgame perfect
but alsv ‘M\mgvahw@ proof 2 i 2

Fartedl amd Maskin 1989y .

Weak. Renegotiativn Proofwss. No contimogivn plowj inthe * book 0f plays’
is ‘Powetv dominated by any other., wd
k. low + A SPE e 0f sub - nithuoctho 'ble
P T o . bk ok o’ o b ere T
prood - otherwize plovjers wewld, renegetiate v the mustually prefesvecl. continuotivon

(%) weak vHativn NS Il o coMpanizon wlHun +he playbotk of a. giviem SPE,
not a'c%ié dl‘?f&%ﬂ’@%&. P st ¥ag

ty, L
Check SPE (one-deviation principle): L R D N
@[C,Clneed1+45>2— 5,46 >1/2 U[66[37| m
@[D,C],need —1+6 >0—6,< 36 > 1/2 D|73]|-11 4

\A YAV
it

@[C,D], same as [D,C] by symmetry. D,R notD,R

The stick-carrot strategies above, right, form a SPE for ¢ near 1
The automaton on the left, above, is “Tit-for-tat then forgive”: (specifically, for § > 4/7), but aren’t renegotiation proof. (Why?)
@ Play (C, C) unless someone deviates
@ If P1 defects then play (C, D) once (try again if not successful)
and return to (C, C); if P2 defects then (D, C) once and return.

The following construction is a renegotiation proof SPE:

Check SPE (one-deviation principle):
@[U,L],need 6 + 66 > 7 +36,i.e., 6 > 1/3.
@[D,L]: Nash, no gainful one-shot deviation.
@[U,R]: same.

The computation on the right, above, shows this is SPE for 6 > 1/2.

Renegotiation proof: P1 prefers starting from [D,C] to [C,C] to [C,D];
P2 prefers continuation plays in the exact reverse order.

P1ranks [D,L] > [U,L] > [U,R], P2 in reverse.

Theorem (J. Farrell and E. Maskin, 1989):

Assume n = 2. Let v = (vq, v2) be a feasible, strictly IR payoff-pair,
and assume it is generated by action profile a = (a1, a2). In PD. we support
(€, 0) nsing .
If there exist stage game actions a’ = (a}, a5) and a” = (af, a5) with f o= (C, DY,
n =
@ vi > 1 = maxs, u1(31,a5) and vp < up(af, @), o= (DO,
) vi < u1(af, ay) and vp > ¢ = maxs, u1(af, ), Wetod -
then for J near 1 the infinitely repeated game has a renegotiation FOWN but et :Fqu.Cf '
proof SPE with average discounted payoffs v = (v1, v2). LPM”W’WT ST FRWAR ol
he pusher befie conperation
Converse: If an infinitely repeated game has a renegotiation proof Com be rettmeol)
SPE with average discounted payoffs v then there are action profiles
a’ and a” satisfying (1) and (2) with weak inequalities.



Findte Repetition Folk Theprems

Theorem (J-P. Benoit and V. Krishna, 1985):

Assume n =2, = 1. Let v/ = (v{,vy) and v = (v{, v') be Nash
equilibrium payoffs in the stage game with v; < v{’ and v§ > v'.
If v = (v1, v2) is a feasible payoff vector such that v; > v{, vo > v/
and v > Av/ + (1 — A)v” forall A € [0, 1], then, for T sufficiently

large, it can be approximated arbitrarily closely by the average payoff
of a subgame perfect equilibrium of the T-repeated game.

- V, V. Nosh Bawilibnuna agaffs

v: featibke PW% ’

_ ximated as the aMerage
p of a. SPE provicel. T
suciently Large

» U1

Benoit & Krishna: Finite repetition expands the set of SPE if the stage
game has multiple Nash equilibria ranked differently by the players.

proof of Benoit & Kishna's Theorem-
Set T* ab. TT*—W’;V" 2Vi-Vi @ PLionfoms - Vi+ TAYRW

X ViVe o — p1 dwvlates: Vi+ T '
T =F=7n-\ = Corfomus > dawiotes lmwﬁbn@
Asswme thot T > T~ Proposecl equlibrivm sirodegies .
1. For £ ¢ T-T* ploy %o gemerate (vi,Vs) wlest Someone olevictes
a. If w one hak oleviorted ot amy +<T- T, them Fom then on
olternate between playing (W' vy andl (W, Vi)
if Plower L clriaded at T=T-T%, than ploy (v, V2) v the end
f;f Player 2 deviasted. at +eT-T*, than ploay (" Vs o the enol

Rumarke : pb hae no NME, thus unigue SPE = (b.D) on finte tepetrfion



Congiruchvn. in o faumibion exoumple

L R Pure Nash: (U, R) and (D, L);
Ulee6|3zr mixed Nash: (gU+ 1D, 2L+ LR).
D73 11 (5 525515 )

Nash payoffs: (3,7); (7,3); (5.4,5.4).
Suppose the stage game is played T < oo times, no discounting.

SPE to sustain (U, L) in all periods but the final one:
@ Play (U, L) until the last period unless someone deviates;
if no-one has deviated, play mixed Nash in period T.
@ If P1 deviates then play (U, R) in all subsequent periods.
@ If P2 deviates then play (D, L) in all subsequent periods.

Recent Denvelvpmesits

1. Impesfect Publdc Menttor
past advbm are Wwbwval\l%/ There ae publit signals Imperfectly
conedafecl with aggtegate achim
Brample - the OPEC couted

OPEC’s goal is to constrain total oil production and keep oil prices high (“stable”).
Explicit collusion: Each member country has a quota. Members’ production is
difficult to monitor, but world-wide oil prices are publicly observable.

A drop in oil price can be the result of a member country exceeding its quota or a
fall in oil demand.

Covpetattive | collusive eawilibrio. may SHAL be constructed wndet
imperfect publit monitorg uehg -trigger shwrtegies.
—— prie. waks prtentially tiggered by dmama chocks

Imperfect Privote Monitoring
suppvse at each £, each plawjer observes o private signal that
ngrees wﬁumoy Nl aiton Lith probobi Uity ¢ amdl dﬁm
frome I with. prob a,blmg ¢. (Com't observe mewﬁ HY the

What goes wrong in PD, with (say) grim trigger punishment?
Suppose Player 1 observes that Player 2 played D. But in equilibrium Player 1 knows that
Player 2 did not deviate.
Player 1 knows that if he carries out the required punishment (playing D at least once) then
Player 2 likely observes D.
But that would trigger punishment from Player 2. Since Player 1 prefers cooperation, he
won’t play D as required.
As a result, Player 2 can deviate without risking punishment. The equilibrium breaks down!



3-8y J. Vadimiki (2002) and M.Pictione (2002.) -
swstoin "(C.C) forever in PD” wa belief - free equilibiium,
+ Construct an equilibrium where i is indifferent between choosing C and D if j is
playing C in the same round.
Also make i indifferent between C and D in case j is playing D. So i is indifferent
between C and D at all t, after any history.
If Player j defects, i can punish her by decreasing the probability of playing C .

In SUch ain equibibrivum, 4 olper Wob case whether e observed D by
miaztoke OF fe Hunks 7 has teally deviorteol -

—— Tolk Theotem for all games . Hormer anol Olszewski (2o0b).

Insighte for competition podicy
o makes Collusdon easien :

¢ 1- nmbtimarket contadt (chaot on pne mantet, retalicde on gl
2. maet the competttion” claise - custome halp clfect olefechibn.
3. mast fowored customer’ clamse = prite commitmest
2 Yrole "body thodt mowTore anl Rports On the firms aetions
-~ maker colluson Raueler -

r 1. Lenlenyy towanrds wizHeblowery

2. bwkivess cycles
3. imperfedt Mfbrmativn., diffetetiohvn of product



