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Prerequisites:
Game Theory from Micro

Stategic- Form Game 12x2 Nash Equilibrium
Extensive- Form Game , Subgam - Perfect Equilibrium
Cournot Game , Stackelberg Game
Repeated Game . Bertrand Game



fun fact: if players have strict preferences over the outcomes then the number of Nash 
equilibria is odd!

Strategic - Form Games

Game Theory : multi-agent optimization problems
Cournot (1838) : quantity

- setting game in oligopolistic competition
John von Neuman (1928) : a 'minimax' equilibrium in zero-sum games
JohnNash (1950) : Nash equilibrium
Reinhard Selten (1965) : perfection in dynamic games
John Harsanyi (1967) : Bayesian equilibrium under incomplete info

A Game in Strategic Form
players : maximize own payoff knowing others do the same

3 possible strategies for each player simultaneously strategy profile
payoff for each player at every outcome

1 strictly dominant strategy
2. Iterated strict dominance (ISD)

iterated elimination of strictly dominated strategies (IESDS)

1) iterated weak dominance
(the order of deletion may affect prediction)

3. Nash equilibrium : mutual best - replies ,
a self-fulfilling prophecy

<*) mixed strategy Nash equilibrium self-indifferent\make others indifferent
Nash's Theorem (1950) : Every game with finitely many strategies

has at least one Nash equilibrium in Pure
ormixed strategies.

(but finding all Nash equilibria is computationally difficult)



If Row plays each strategy with 50% chance then the mathematical 
expected value of Column’s payoff is 0.5 · (−1) + 0.5 · 1 = 0 from H, 
0.5 · 1 + 0.5 · (−1) = 0 from T, Column is indifferent, may mix
If Column mixes 50-50 then Row is indifferent, may mix as assumed
⇒ (0.5·H+0.5·T, 0.5·H+0.5·T) is mixed strategy Nash equilibrium

2 pure Nash equilibriums + 1 Nash equilibrium in mixed strategies:
if Ann plays B with probability p , S with probability (1 − p) then
Bob’s payoff from B is 3p, from S it is 2p + 5(1 − p) Bob is 
indifferent iff 3p = 2p + 5 − 5p ⇔ p = 5/6
if Bob plays B with prob q and S with (1 − q), then Ann is indifferent 
iff 5q + 2(1 − q) = 3(1 − q) equivalently q = 1/6

mixed Nash :

&B+ -S , -B+ ES)
=> payoffs = 115 , +

Nash in 2x2 Games

Example : Hawk- Dove Game
ROW's Column's

(1-N) (H) +
*

(r) r
*(t)

I I

(t)
best reply

(l-t) B T L R

0 113 (
↑

O 213 / t

Row's expected payoff :(MIT)
= - 3(1+) + 80

W(B) = 2

Column's expected payoffs : [Uz(L)
= - 3t+ 8(1-4)

Uz(R) = 2(1-t)

=> three Nash equilibria

IT. R) and
best reply

S(tT+ (1-t) B , L)

102+ 33

Modified Example



Dynamic Games extensive form : tree+ info sets
strategic form : x timing of moves

From strategic form to Extensive Form
a directed treegraph (nodes ,

directed edges , no cycles)

& a player assigned to each nodes
, action corresponding to edges

payoff written at terminal nodes

"Who knows what" indicated via information sets

Backward Induction= > Subgame
- Perfect Equilibrium(SPE)

optimal
continuation play

F: sequentially irrational
(not credible)

1 . Backward Induction can be used in every sequential - moves

game with perfect information /= players observing all earliermoves

2. Subgame- Perfect Equilibrium (SPE)
=> is Nash Equilibrium (SPNE)

3
. SPE induces Nash equilibrium in every continuation (subgames of
theperfect-information , sequential - moves game.

SDE rules out Nash equilibria sustained by non-credible threats
=> SDNE (via backward induction) is a more robust prediction than
Nash equilibrium in dynamic games



4
.
Simultaneous moves in the extensive form

Isequential BoS , Di first)

&
imperfect information

Imperfect Competition in an Industry
Cournot (1838) Game

5firmI: Produce& , price P= q e

=> 2Firm7
: MaxCI-Giq2& given &2:gTqnEl - 3 q

*
= qta

Cournot-Nash equilibrium

Stackelberg Game (Sequential quantity setting
firm I picksq, first ( first-movers

=> MAX (1-81-82)G = (1- q -E q 1 => q = 5
, q

*
: E

The first mover is strictly better off in quantity - setting duopoly

↓
Best reply functions

↓
Cournot

firm I's isoprofit stackelberg gamecurve



Five pirates, A, B, C, D and E, find 100 gold coins. They take turns, in alphabetical order, to 
propose a division of the loot.
All pirates that have not been eliminated have to vote for or against the current proposal. If 
the proposal gets weak majority then the coins are distributed accordingly and the game 
ends. If it is voted down (strictly) then the proposer is eliminated (has to “walk the plank”), and 
the next pirate makes a proposal. Each pirate’s main goal is not to be eliminated; conditional 
on that, he or she maximizes the number of gold coins received. All else equal, each pirate 
prefers to eliminate as many other pirates as possible.

players 1 and 2 have £1 each, player 1 gets to move first
a player can either Stop (ending the game) or Pass (decreasing her own payoff by £1, increasing 
the other’s by £2, and letting the other move next), each can Pass a fixed number of times (say, 3)

Repeated Games

Five Pirates Puzzle

Solution :

Centipede (Bob Rosenthal , 19817



First tournament: each program paired with all others to play 200 iterations of the PD; 
the highest total cumulative score wins
The winner was “TIT FOR TAT” submitted by Anatol Rapoport (psychologist, 
1911-2007), which played C in the first game against a new opponent, then played the 
opponent’s most recent move
Axelrod published the results, then called another tournament; the winner was again 
“TIT FOR TAT”
Axelrod’s conclusions: be nice but provocable, fair, and not tricky

Finite Repetition

Prisoner's Dilemma

Pareto-dominates => finitely repeated
↓ prisoner's dilemma

strict Nashequilibrium

unique SPE : Play D in every period
Evidence by Robert Axelrod (political scientist, 1981) :

Hawk-Dove



Infinite Repetition
in infinitely - repeated Prisoner's Dilemma ,

the outcome"(c, 21Theorem :

forever" can be sustained in SPE for S sufficiently close to
1

.

Proof :

*

grim trigger
(Nash reversion)
threatening with

one-shot Nash

forever

Bertrand Game Ifacit collusion in oligopoly
Assumptions : 1 . N firms , a homogeneous product , price competition

2 .

Whichever charges the lowest price takes entirmarket
3. constant whit cost C

4. Monopoly price pM , monopoly profit it'>

Equilibrium in one-shot Bertrand game : p
*

= C Lunique Nash
unlike Comnot's quantity competition model . Bertrand argued
that competition should drive pricedown to the marginal cost
even withjust two firms

yenantity competition : e . g. airplane manufacturing , strict capacity
Drice Competition : e.g. copyrighted software / music ,

sales scaledup

Infinitely - repeated Bertrand Model :
sustain cooperation (p') threat revert to Marginal-Cost
in SPE in the long run pricing forever if one deviates

=>,M ·# πMS
(move firms , more impatient firms , find it harder to collude



Weeks 1 :

Static Games of Complete Info

Formalization of a game
Dominance

3 Rationalizability
Nash Equilibrium (pure ,

mixed , continuous actions)

Correlated Equilibrium



Formalization of a Game
For a static game of complete information (strategic

- form game) :

set of players N = 9 1 , 2.... N) , NEfinity who play simoultaneously
set of actions available to eachplayer , Ai , iEN

1 strategy : a complete (contingents plan which specifies how theplayer
will act in every possible distinguishable circumstance ,

ai

Mixed Strategy : Li , a probability distribution over actions GitAi.

individual payoffs / preferences of each action : Mi (ai, G- i)
,
A-iE Ty+ iAj

-

&-i = (G1 · 92.
... Girl ,

Citl ,
... An)

matrix form (normal form)
and equivalent extensiveform representation

Dominance
strict dominance expected payoffs

WA-i. Edi , Vi(Li' G-i) > Vi(Gi , &-i) : strategy ai strictly dominatedun -

↓Gi EAi strictly dominated by ai : strategy ai strictly dominant

(p) ( +4)

r strictly dominated by any
strategy s = pe+ (HP) < with PE (10, %16)

Iterative Elimination of Strictly Dominated Strategies /IESDS)

call based on every players are and are know to be rational



In games with infinite action spaces the order-independence of IESDS solution is 
not guaranteed unless the strategy space is compact and payoff functions are 
continuous, see Dufwenberg and Stegeman (Econometrica, 2002).

&ESDS -> Dominance Solvable

7 Let IiCR) be a set of mixed strategies with support R . e.g. [ISA , CI) = <PA + (1-p)C)

2. For all players i, define Ri = Ai : set of pure strategies
3

.

Let RiCR!"be a subset of undominated actions
,

i. e., such that for any aieRi"
,
there is

no suchLie I(Ri") that U(Xi , a -i) > U (ai, a-i) for all GiER!

Ri" is a set of pure strategies which are not strictly dominated by another (mixed)

strategy from Ri
4. The set of pure strategies which survive the iterated elimination of strictly dominated

strategies is denoted Rio = &Ri
5. If Ri is singleton , thanthe game is called dominance solvable

property : In finit games the order of elimination doesn't matter

-

-

*=F
A Cournot Oligopoly Game

players : 2 firms

[ Actions : Ai = [0 , 1)
, firm chooses qitAi

Payof : AlxAn-> 1R"
, Tilqi . qu =

3 8:21-qi-Gritif gitgr,

Iterative Elimination of Weakly Dominated Strategies /IEWDS)
WA-i, Edi , Vi(Li' Gi) = Vi(Gi , 2-i) : strategy ai weakly dominated



property : the orderof elimination matters
remark : the Nash Equilibria can be lost during IEWDS

x common knowledge of rationality/stricker

you cannot believe your opponents' having probability of playing some

Rationalizability strictly dominated strategies
belief in everyone's being rational

Pi(A-i) : probability player i puts on Ai
, withEPA-i) = 1 "beliefa

We call player i rational if he maximizes his expected payoff givenPil

Definition : Player's action ai is called rationalizable if it is a best

response to mix of the opponent's rationalizable actions.

(player's is belief of a - i <

Independent vs Correlated Beliefs



In finite games the set of correlatedly rationalizable actions coincides with the set of actions 
surviving the iterated elimination of strictly dominated strategies.

In two player finite games there is no need to think about correlations: all actions surviving 
IESDS are rationalizable and the other way around.

How reasonable it is to allow for correlated beliefs? Aumann (Econometrica, 1987) argues:
“In games with more than two players, correlation may express the fact that what 3, say, 
thinks that 1 will do may depend on what he thinks 2 will do. This has no connection with 
any overt or even covert collusion between 1 and 2; they may be acting entirely 
independently. Thus it may be common knowledge that both 1 and 2 went to business 
school, or perhaps to the same business school; but 3 may not know what is taught there. 
In that case 3 would think it quite likely that they would take similar actions, without being 
able to guess what those actions might be.”



Nash Equilibrium

ENE : nobody wants to deviate given others play the same strategies
Dominance : nobody wants to deviate regardless of others' strategies

A set of 'interesections' of BR correspondances gives a full net of NE.

proof : a
*
in a NE iff. Vi , Gi

*

E BiLAFi)

Example Revisted : Cournot , Bertrand
the intersection of best responses

-> NE

Mixed NE and Indifference
The mixed strategy profile 2

*
is NE iff · for each player I

↑ 2: assigns zero probability to all pure actions ail Vilai ,<i) < Visdi -, <Ei)
there are no actions ai for which vilai , <Ei) > VilLi*, 2Ei)



Two firms produce a homogeneous good at marginal production costs c.
There is a unit mass of consumers. Each consumer has valuation v > c for the good, 
which is the same for all consumers.
Fraction λ of consumers are informed. These consumers know both the prices and buy at 
the lowest price. If the prices are equal, they split evenly.
Fraction 1 − λ of consumers are uninformed, they just buy the good at the closest store. 
We assume that they split equally across the firms.

Mixed NE with continuous Actions

price dispersion

&heterogeneousinformation discontinuity in denhe

Mixed Strategy of firm i defined by distribution Filp) = Pr(price =P

symmetric candidate equilibrium : Flp



Suppose that the state space is generated by a through of the dice Ω = {1, 2, 3, 4, 5, 6}. 
Partitions: P1 = ({1, 2, 3}, {4, 5, 6}), P2 = ({1, 3, 5}, {2, 4, 6})
Players condition their action on their partition:

whether ω is smaller than 4 or not for player 1 
whether ω is odd or even for player 2

the profit of a firm charging p comes from :

Yuninformedcustomers eele

if it chargest the lowest price : <[I-F(p1I(p-c)
=>Tcp) = x [1- F(p)(D-2) +

'= (p-c)

upper bond : P = V , T=*/V-2)

solution (constant expected profits for any p) : Tcp) = M

i. Fep) =/It Pik) ,
P =

(MV+EXC I set F(p) = 0 )
1 +x

Correlated Equilibrium

revelation principle
in mechanism design



if players have strict preferences over the outcomes then the number of Nash equilibria is odd!

Supplement
don't survive IESDS/IDSDS : not a best response to any belief
Rationalizable (RAT) : best response to some belief

support by rationalizable strategies
Nash Equilibrium (NE) : best response to the correct belief

in 2-playergame or n22

correlated strategy games :

NE
RAT survive

RATE SUNIVE IESDS

LESDS "correlate our decisions"

=> (n-1) opponents merge into a

super opponents against you

process of finding NE :

1
. IESDS (consider mixed strategies)

Si is strictly dominated if there ESi for every S-i sit .
MilSi", S-i)2 HilSi, S-i)

Si is Not Best Response if for every S-i , there ESi' sit . UilSi' S-i) > Mi(Si , S-i)

only the first leads to deletion ↳* 2 R LC R
notice the "mixed" possibility
doesn't matter for NE latter B : 3 : 1 1 i , ,i l

2. Pure NE

3. mixed NE

if strategies 3x3 , then a total of (23-1) x (23-1) combinations

1B(P , q) = (BR(q) , BR2(P) If
"

==
"

.
Nash Equilibrium

plane 2

-

1 (B(p, q)

S -> NE => wo
odd !

1450

up- q) plane 1



Problem 2. Two ‘oligarchs’, 𝐴 and 𝐵 have a dispute over an asset of value 𝑋. Although 
both oligarchs now reside in city 𝐿, they decided to settle their dispute in court in city 𝑀, 
where they originally made their money. The reason is that the legal system in city 𝑀 is 
simple and transparent: both contestants provide the judge with the ‘evidence’, which 
takes form of a briefcase with cash. The judge keeps the evidence from both contestants 
and decides the case in favour of the one who provided more evidence. If both 
contestants provided equal amount of evidence the judge flips a fair coin to make a 
decision. Assume that oligarchs submit their briefcases simultaneously and any 
contribution 𝑦 ∈ R+ can be put in the envelope.
1. Derive the best response of oligarch 𝐴 to oligarch’s 𝐵 contribution.
2. Using your answer to part (1) show that there is no pure strategy equilibrium.
3. Prove that there is no contribution value played with a positive probability (Hint: 
consider small upward deviations).
4. Using your answer to (3), or otherwise, show if 𝐹(𝑦) is a symmetric mixed strategy 
equilibrium distribution then it does not have gaps in its support.
5. Argue that the lowest contribution in the support of 𝐹(𝑦) must be equal to zero.
6. Derive the equilibrium strategy of the oligarchs.

Supplement

1
.
Assume A puts YA . B pub is in the envelope .

UA(JA ; YB) = X - YA , if YA > UB

&-YA , If DA = YB
- YA , if YA < YB

Best Response BALYB) = 30,DB
payoffA payoffA

** · YA O

E

YA

YB , YBz YB
YB X X YB

2. YB

X
No pure Nash Equilibrium.

O * YA



3. Proof : (F. F) cannot be an equilibrium whenF looks likethis :

FCp) is continuous .

There is no atom Po .

Say Fassigns mass Myo) > 0 .

PayoffA(Yo , F) = M1y0) (2X-Yo) Tie

+ Pr(B plays < Yo) . (X-Yo) A wins
+ Pr(B plays 20) · C-Yo) A loses

DayoffA(Yo+ E
, F) = M110) <X-yo - E) + Pr(B plays < Yo) . (X-yo- E)

+ PrLB plays < (0) · ( ?)

2 M(yo) (X-Yo-2)+ Pr(B2Yo) <X-Yo-E) + Pr(B> Yo) (-yo-2)
= M(Y0) - Ex +M1Y0) (2X-Yo) + Pr(B<Yo) (X-Yo)+ Pr(B>Yo))-Yo) -E

= M110) - Ex + Payoff (Yo, F) - E

VM(Yo) > 0
,

X>0. . FOCE < M1Y0-EX) ,
s.

t. PayoffA(Yo + E, F) > PayoffAlyo .2)

=> not stable at yo.

4. Proof . (FF) cannot be an equilibrium whenF looks like :

There's a gap [No , 3.3 in the support
pdf

MM
yo yu

PayoffAly , F) = Pr(B Plays<y) X -

y = Fly) -X-y
PayoffA (10 , F) = Flyo) · X-Y0 > PayoffALD"F) = FIY1)X-Y :

5. Say supp(F) = [1 , 5]
From 13) , FIL) =0

,
thus PayoffA(1'F) = -y = 0 => 1= 0

(If 130 , the payoff <o , but we can always guarantee o by setting 1 = 0)



6
. Payoff (Y , F) = 0 for FY :

F(g)(X-y) + [1- F(y)] 1-y) =0

=> Fi=* (uniform distribution)

Correlated Equilibrium
L R

"four traffic lights"
7 y Sit . x+y+ ztW = 1

=> df = 3

B z W told")" - X or y

Correlated Equilibrium
Mixed Equilibrium provide a reasonable

generalization of
L R mixed-strategy NE.

- Pq PCI-q) df = 2

B 11 p1q

But Mixed NE could be weird :

A B
mixed NE:

A XIX 0 , 0 -
(x+ 1A + xF , B)

B 0 ,
0 /

(xx 17

Remarks : NE Omits I doesn't provide

31 . SelectionamongNEGnamic thing



Weeks 2 :

Static Games of Imperfect Info

Bayes - Nash Equilibrium
Purification
Global games



Terminology
strategic Games of Incomplete Information (Bayesian Games) :

players have incomplete information about other players'
preferences and characteristics.

Osborn : imperfect information
Harsanyi : games of incomplete information = games of imperfect

information that have thefollowing timing :

nature draws a type for each player

1 nature reveals to each player his or her type only
players simoultaneously choose strategies
type-dependent) payoffs are realized

Thus game of incomplete information can be represented as

games of complete but imperfect information about the players' type.

state WER

space of signals : S : 2 -S

signals + prior distribution
-> posterior belief

strategy space for

player 1 : B. BS
,
SB

. SS)
-

signal mic : cooperative
signal mirc : non-cooperative

player 2 : 3 b. 33

conly pure strategies mentioned)



Bos : More Complicated Signals
Suppose : PCMECooperative) G= G

&so i

prior belief PI Cooperative) = P

=> Player 2 needsto update his beliefs about the distribution of player I types conditional

on the signal :

PrimilM2) = PrIMERME) =

PrimilM)Pr pqu
Pr(MilMEL Pr(M2) + PriMilMEc)Pr(Mic)

=

PqI + (HP)(1-q2)
and similarly for Primilmic)

Player I also needs to form beliefs about the type of player 2 :

PrIMIME) = q , Primal Mic) = 1-82

Bayes - Nash Equilibrium

Example : BoS with Pr) Cooperative) = p= *

Pure strategy BNE 1 mixed strategy BNE

b S (B)

BB 1 , 1 1 , 8

BS 1 .5 ,
0.5 0, I

SB 0, 0.5 1 , 5 , 7 suppose ['(M) = B , T'(mic) = < B + (1-2) S

SS 0. 510 0 .5 , 2
player 2 indifferent : V2(b) = *x1 + Ed 3 =2 =5

V2(S) = 5 (1 2) x 2

ISB. 3) is unique BIE player I indifferent : VNc(B) = 2 (1 B)
= B ==

VNc(S) = B

I checkthe cooperative type doesn't want to deviate :

V(B) = = = Vc(S) = 5)

=> 3 (+Es) · Eb+s



For each player denote WX a strategy “play 
W if I am y type and play X if I am n type”.

Examples
↓ . Swing Voter's Curse

2 states of the economy : A , B
-

in state A. I better than 2
,

& 2 candidates : 1
,

2 in state B.
2 better than 1

.

2 Voters : U= 1 (best candidate wins) .
U= 0 /Worst) , U = = (tie)

S citizen
1 : informed of the state of the nature

citizen 2 : PLA) = 0.9 , PCB) = 0

Formalization : payoffs :

players : citizen 1 and 2

states : 3A , B3
actions : vote for 1/2 , do not vote : 31 , 2, 03I signals :(different in A or B

always the same

beliefs : sconsistent with signal
PLA) = 0. 9 , P(B) = 0 . 1

Best Response :

Equilibria : ((1,2) , 0) . (10, 2) , 17

2. BoS 2x2 problem

Typei1 :

Type M :

BRE

Similarly, BR2 :

=> two equilibria : (BB, BS) , (SB, SS)



Consider a Cournout Oligopoly model with the demand function p = 1 − q1 − q2. Suppose 
firm one has zero production costs, while firm two has costs either 0 (with probability α) or c 
∈ (0, 2/(4 − α)). Firm two knows its type, firm one does not know it. Find BNE of the game.

Suppose that there is a single buyer who is willing to pay up to 1 pound for a product. There are 
two sellers, each seller has production cost ci , which is independently uniformly distributed on 
[0, 1]. Sellers simultaneously make their offers and the buyer buys at the lowest price or 
randomly chooses the seller if the prices are equal. Find the BNE of the game.

3. Cournot

Firm 1 : Th = [<(1- q
-

q2) + (1-27 ( + q1 - g2H)] q ,
= (1- Gi - q2) q1 => q=

Firm 2 :

Low Cost: [22=<Fi-gzrqzqn = To e
where q = 2 82+ (12) G2H

2- ( -2)C
solution : q, =

/ + (+27C
, q22 =

6 , 821 =
2-

14

Continuum of Types
1 .
Bertrand Competition
Setting andStrategies

seller's linear increasing pricing strategy : Pi = Li + BiCi

Mi = (Di-(i) · Pr(PicP-i) = (Pi-G) · Dr(Pi < 2 - i + B- i C-i)
= (pi-Ci)-Pr) Pi-diaCi) = (Pi-fi) (I-PGi&- ;

2Ti 1

ap
= 0 => Pi = 2C + 212- i + B- i) = Bi =E

.
2i =

2

thus: Pi = ECi+z

seller's arbitrary increasing pricing strategy P(C) :

Deviation : pretend to be a different type I call it <)

T /2 = c) = [p1c) - C] · PrIPII) < PIC-i)
= [P(2)-C1 xPr < C-i) = [p12) -C](1-C)

2πix = P(e)(1- 12) - P(2) + c=

the best possible deviation is to the firm's true type (i. e., = C) :

p'((1-2) - P(c)+ C = 0



2. Double Auction

valuation for the good :

&buyer:UbrrToe
Both buyer and seller simultaneously announce their prices Po and Ps.

If Pb = Ps , the trade takes place at a price (Pb+ Ps) 12
.

payoffs (when Pb < Ps : 0 , Otherwise) :

3 Tb(Pb . Ps , Vb) = Vb-Pbt
TIS <Pb . Ps , Vs) = PbtPs -VS

Suppose that the seller plays a linear strategy : PSCUs) = 2 + RV s

T = Pritrade)· (Vb - expected prices
Pritrade) = Pr(PbIPs) = Pr(Pb= 2 +BVs) = Pr(Vs < Pbj 2) = Pb
12) Since ps- U [2 , 2+ B1 :

expected price =
Pb + ElPsIPS< Pb)

= 2/1b+ E(Pb+2)
=>Tb(Pb . Ps , Vb) = <B(Pb-2)(Vb- 3Pb -2)

FOC : Pb = Vb + 52

suppose that the buyer plays a linear strategy : Pb = ++ SVb

its = Pritrade) · (expected price - Vs)

= 48 (t+ 8 - Ps)(3Ps + ++8 - 4Vs)

=>ps = EVs + 5 (t+8)

Equilibrium Strategies : ↑
9PDF-TD loss of efficiency

trade occurs when PbI4s => Vb = Vs+

Actually, the linear equilibrium is the

most efficient one.

cless efficient for other equilibria :)

choose some x E [0, 17
,

Pb = 3
,

4
, if VbzX , Ps = 3 4 , if V e ↓ x2 - x+5 = (x-5)+4

1
, if Us > X



There is an asset (e.g. a firm) potentially available for sale.
The seller knows the value of the asset under its management.
The buyer does not know the value of the asset and thinks that its value is uniformly 
distributed on [0, 100].
The buyer believes that it has superior managing skills and under its management the value 
of the asset will go up by 50%.
The buyer proposes the price p for the asset, the seller can either accept or reject. If the 
offer is accepted, then the asset changes the ownership.

3. Adverse Selection

The seller accepts the offer whenever PcV.
The expected payoff of the buyer is :

Tb = Pr(pIV) · /EE(VIPIV) - p) =-
=> buyer's best response : p= 0



Purification
Example : noisy Bos

bS

B 2, 1 0,
0

three Nash Equilibria :

S 0.
0 1 , 2

(B , b) . (S , 3) . ( B+ 5 S , 5b+ 3)

perturbed game,
b S E and S are players' type lextra payoff from

B 2+ E, 1 E
,
S their favourite actions : private information

S 0. 0 1 ,
278 S . S-U[0 , X) (independent)

suppose player 2 follows pure strategy

3 play s if 8 > S
*

play bif 8 < S
*

Best Response of player =
:

V(B) = (2+ 2) ** + E(l - -, ) =2, + E

v(s) = 1 /l - *
V(B) - V()) => E/ - 3)

*

= q
*

=> play B if E ? &*
pure strategy

: specific action without
randomization=> Et =--** ) 2*

= S
*

= X (mixed strategy :
involve randomitane

2+X

under pure strategy BNE
, Pr(B) = 1 - =

3 +X

himxx=

Therefore , the limit point of outcomes of BNE equilibrium is
mixed Nash Equilibrium of unperturbed game.



Two investors simultaneously decide on whether they want to participate in a project or not:
1 participation costs for each investor is c;
2 the project succeeds only when both investors decide to invest;
3 if the project succeeds it brings v to each investor.

Global Games
Carlsson , van Damme (Econometica , 1993)

Definition : A game is randomly diamon from a class of games
Iglobal game) , each player gets a noisy signal about
which game is played.

As types ofthe players are randomly drawn conditional on

the actual game played , types become correlated.

Example :

i m 1) the participation costs are unknown
I V-C , vef - C, O exante and each players gets a

N 0. -2 0, 8 conditionally independent signal about it.

Analysis :

1. Complete Information
Cc0 : unique NE (1, i)

E CV : unique NECN , n

CEto,
vS : three equilibria (2, i) , (N, n)

,
12+N, fitn).

2. Correlated Types
VII0 , CES-2, -1 ,

... 11 / 123 . Uniform distribution
signal :

Gone player
learns true value + = c

.

another player gets +> Sc-1 . c+ 13 equally likely

joint distribution/conditional on c) :

tiltz C C C+ suppose player I gets signal + E [1 , 11] .

c - 1 O # C+ =

3 .Wp P-*
-> E(CHI = Fr

C # o

2+ 1 o O
# 1

, w . P,

t2lt =3:WDE 1 T1 E3-3,2 , 12 , 13) similarlyne

See next page : correlated uncertainty delivers a unique
prediction for almost all values of c .



This conclusion is replicated in a game with a continuum of types and holds even if uncertainty is 
vanishingly small.
Thus, global games approach give a simple tool for equilibrium selection.

The outcome we obtained corresponds to a situation when a player has a “Laplacian prior” over
opponent’s action: each action is taken with equal probability.
In this case a player should invest whenever v/2 > c and abstain from investing if v/2 < c—same 
as in our BNE.

* y If +1210 ,
ElCIt) > 10

=> not investing dominates

Vi (2) = Pr1Gzilti=10)X - El CHi)

= li-PrIzillIHI 0) x 10 -10 < 0

=> choose NI Vi(2)= PrIA-i =I/fi = +) x
- El CIti)

= [1-Pri+-i = +Hl+i =t)] x V - + = E-C

& if both types invest for +i =+-1

Vi (2) = Dr(II +i =+) x V - E(CIti)

& Prlf-i =+-1(fi = t)XV-+ = -C

Vi(I) = Pr1Az=ili 0) XV - E(CHi)

2 Pr(tz=-1/+ = 0)XV - 0 = jV>0

3 => Choose I
.

IfI < 0
, E(CIt) <0 => investing

Risk Dominance

The risk-dominant equilibrium is the one with higher deviation
- payoff product.

L R Suppose a) e ,
bid, gc . hif)

T ab cid deviation-payoff product :

3 Ceibahe
B eif git IT 2) H3K-dominant if (a-e((b-d) > 19 -C)(h-f)

(

↳ Hi If player 2's playing 50-50 :

player I should playT
(the risk-dominant stat)



Risk-dominance is a pairwise criterion.
See transitivity paradox :

6322 3 12 52 32

Global Random variable -> better (? ) single ( 2 ) NE

(See PS 3-3)



Weeks 3 :

Knowledge in Games

Information and Knowledge



Information and Knowledge
Assume that there is a finite state space 2 and a common priorM.

- A state (of the world) 1 E2 captures all relevant uncertainty :

the state of nature (primitive uncertainty ; e. g ., payoffs) ,
who knows

what about it and about each other's information ,
etc.

withM(w) = #

- Event EE2 is true holds , obtains) in state w if IEE.

Player Information
player is information is represented by an information function
which associates with each were set Pilcos with properties :

- A collection Pi of sets Picw) forms a partition of - .

- In state t player i only knows that the state in Picw)

W3 W5

Partition ->

↳
W. E Pa(Wi) = PA(W3) = PALW5)

Knowledge
We say that player i knows E in statew if PIW) & E

- the event that i knows E is KiLE) = SWE2 : Pi(I) =E
- the mapping Ki : 20 -> 22 is called player is knowledge operator.

Event E = SWi ... Wil # SWj} Sit .

KBLE) = ↑ ........ EC Space Zer PilWj) [E

Fit player i ik R** E is AUTE**



Properties of Knowledge Operator

KBLE) = P ........

1 . Truth : KiLE) & E (a player can only know something that is true)
2. Necessitation : Ki(z) = 2 (a player knows the state space)
3. Inference : ECF- > KiLE) [KiLF)

4. Negative Introspection :

- Ki(E) < Ki( - KilE)) (no unknown unknowns)
Pplayer i ik b/Fit E it ik &EFu &Fi

5. Positive Introspection :

KilE) = Ki(Ki(E) (a player knowns own information structure)
playeri ** E T

Common Knowledge
1 . The event that everybody knows E is :

KIE) = MiKi(E) = SWER : PilW)&E for all in
2. The event that everybody knows everybody knows E is :

KE) = K(K(E))

More generally, K"(E) = SWER : Pi(W) <K" IE)for all is
3 . The event E is commonly known is : KO(E) = AnKY(E)

Event E is commonly known in state wo if COEKPLE)

An alternative definition of common knowledge :

1 . An event F E2 is self-evident between players A and B
if for all CEF , we have PicW) <F , i= A, B

(that is , when F occurs ,
both players know its

2. An event EC2 is common knowledge between A andB
at 10 if there is a self-evident eventI such that :

① WEF OFCE





Each of three players, A, B and C have their face either dirty (1) or clean (0).
The state is a three-digit number, where the first number corresponds to the state of A’s 
face, second number corresponds to B’s and the third to C’s.

Example : Dirty Faces

Each player only knows state of other players' faces :

Let E
*

= 2150003 = "at least oneface is dirty" .

In which state (if any) * is common knowledge ?

Answer :



Sage enters the room, reports “all faces are clean!” if this is true (i.e., announces if 000 
holds), says nothing otherwise.
All players know this, hence each player can distinguish 000 from the state where only 
his own face is dirty:

Sage announces that there is at least one dirty face.

1. If there is exactly one dirty face, then the player with the dirty face knows it and 
immediately raises hand (due to costs of delay).

2. If no one raised hand, then it is common knowledge that all players know that there 
are at least two dirty faces. If there are exactly two dirty faces, then the a player with a 
dirty face observes exactly only one clean face and know that there is more than one 
clean face, so they infer that they must be the second player with a dirty face. Hence 
they raise hand in the second round.

3. If no player raised hand in the second round, this means that each player saw two 
faces, which implies that everyone’s face is dirty.

Is high order mutual knowledge of an event “close” to common knowledge of the event?

Version I :

Now if E
*

occurs , then everyone knows it is true: KIE
*

) = **.

E* is a public event , therefore KP(**) = E*, it is self evident .

Dynamic Game : Version II raise one's hand as soon as sure

his face is dirty (time preference)

Almost Common Knowledge



No Agreeing to Disagree
for itN, EC2 and p Elo, 1]

,
let El = SWER :MIElDilN)) = P)

be the event that player i assigns probability p to E.

1 . Suppose it is common knowledge atw that player 1 assigns probability
p to E and that player 2 assigns probability -' To E.

=> Then P =D'
2. Interpretation :

common prior c : players begin with identical beliefs about->
Then any differences in beliefs is due to differences in information
Li . e ., PI(W) # P2)()

,
thus they cannot agree to disagree'.

3. Belief andCommon Knowledge

4. posterior is not Common Knowledge



Epistemology
Epistemic conditions for solution concepts :

I what players need to know le. g.
about each others' rationality) in order to play)

1 . Fix a game : (N,
(Ai)ieN ,

(Ui)iEN)

2 . State WE specifies (describes) , for all i.
the action taken by player i , ai(w)

l player is beliefs , probability measureMicros over A-i
whatI knows

, information set Picc)

3. Say that player i is rational in stateo if he plays a

best response given his belief , i.e., ailw) is best response
against belief induced byMills

4. Assume that beliefs are consistent with knowledge. That is
,

the support ofMicros is a subset of 3A-i11) : W'E PLW))

Common knowledge of rationality implies rationalizability.
suppose that in statec it is common knowledge that players are rational. Then,

for all i , aicc) is rationalizable.

If beliefs are derived from a common prior and players are

rational in every state ,
then we obtain a correlated equilibrium.

IfU is a (full support) common prior , players are rational in every state ,
ailw) =

aicw') for all i and 1, c'tPich) , then 12
,M, (Pi)i , (ai) i) is a correlated equilibrium.

Nash equilibrium. Fix state w ,
then an action profile alws

is a pure Nash equilibrium if in stateo for all i :

3
i knows the other player's actions : Pill) < SC0' : Gilw) = A- i(W))
i is rational : aicw) is the best response to G-i(l)



Weeks 4 :

Dynamic Games

Extensive-Form Games

SPE/PBE/SE
Refinements forward induction

intuitive criterion

divinity&
spencian signaling



A monopoly (called I) faces a potential entrant (E). If the entrant stays out then it receives 0, 
and the incumbent gets 2 units of utility.
If the entrant enters then the incumbent can either fight or acquiesce. The former yields 
(-1,-1), the latter (1,0) for E and I, respectively.

Definition
Dynamic Games: multi-stage games , games played over time.

static game dynamic game commitment vs time consistency
"Strategic form" "extensive form" (when opponent's move unexpected
Models where players manipulate each others' information over time (signaling , jamming,
reputationn ... ) are prevalent in economics.

Example : the 'Entry Deterrence' game

representation : game tree
F A

E in 1 A
(1 , 0)

strategic
In - - I 1 , 0

out F form Out 0, 2 0, 2

10123 ( 1 - 1) NE : (In , A) . <Out, 7) .
(Out, PF+ (l-P) A) with pot

1 . Backward Induction
2 . Subgame Perfect Equilibrium (SPE) : Only (In, A)

SDE rules out Nash equilibria sustained by non-credible threats

Extensive -Form Games
Players , set N Nature can be one ofthe players
Histories , set H A history h is a sequence of movies to a given point in time

Available actions ,
set Ach) terminal histories ZCH are suchthat Uz , Alz) = &

Player assignment function , PLU)EN moves at h E H1Z = if PlU) = Nature,

there is a probability distribution over Ach)

Information sets I a collection of disjoint subsets of H whose union is H

li .
e

., a partition of H) : for h
,
h'e 1 . PlW) = Pch) and Ach)= Ach's

Payoffs SHIIE)SiEN at every terminal history zEz

* Beliefs : probability distribution over nodes in an information set



Representation and Conversion to normal form
1 .
Lossless graphical representation : "Game tree +

"

- Directed graph with a single initial mode ; edges represent moves

- Probabilities on edges representing Nature (chance) moves

- Nodes that the deciding player cannot distinguish /which are in the same information
set) are connected by a dashed line.

2. Lossy conversion : Normal (or strategic form (
- A strategy is a player's complete plan ofaction

, listing a move at every information set

-strategyprofileonestrategyfromeachplayerssetdetermines
an outcome [Paysit

(*) The number of a player's strategies = T the numbers of actions available at each

of his information sets.

Example : Simultaneous vs. Sequential moves

Example : Reduced normal form

P replaces PA , PF (equivalent)



Solution Concepts
1 . Every extensive- form game can be converted into its (reduced)
normal form. Information about dynamics may be lost.

2. Every finite , normal-form game has a (mixed) Nash equilibrium.
3. A Nash equilibrium may fail time consistency : strategies may fail

to best respond in some out-of-equilibrium continuation.

Refinements of Nash equilibrium in dynamic games :

1 Subgame-perfect equilibrium (SPE)
2. Perfect-Bayesian equilibrium (PBE)
3. Sequential equilibrium (SE)

SPE :

E Definition
: NE in every subgames (non-singleton nodes (

Method: Backward Induction

Subgame- Perfect Equilibrium (SPE) first games , complete info
Subgame : the continuation of the game (sub-tree) after a specific

history (nodel ,
such that no information set is broken up'.

SPE : a strategy profile that is Nash equilibrium in every subgame.

In simultaneous games ,
there are no subgames ,

thus all Nash are SPE

SPE + beliefs are specified by

Perfect Bayesian Equilibrium (PBE) Bayesian
Rules

PBE : a SPE strategy - profile and beliefs for all players at their

information sets
. Satisfying :

1 . Sequential Rationality : Each player chooses optimally given his beliefs at each
information set andthe others' equ strategies.

2
.
Bayesian beliefs : Beliefs are computed based on equilibrium strategies via

Bayes' rule whenever possible. No restrictions on beliefs at 'unreached information
sets in two-player games.

On-path beliefs generated by equilibrium strategies via Bayes' rule.
Off-path beliefs chosen by the modeler to support the equilibrium.



Sequential Equilibrium
Assessment : call (T,n) a potentially mixed strategy profile ↑ coupled

with beliefs1 (for all players , at all information sets)

1 . Assessment (T,) is consistent if there is a sequence 11m. m)That

converges to (r ) as m - c
,
such that im is a completely mixed

strategy profile andMm is computed from im via Bayes' rule.

2. An assessment )t,) is a sequential equilibrium (SE) if it is

sequentially rational las in the definition of PBE) and consistent

off-path beliefs must bethe limit of Bayesian beliefs generated
by 'trembles' ,

otherwise same as PBE

d)
diti
dxi) aTTi

First-mover advantage : dX
=

aXifXy
My marginal profit changes with your input efforts

Bertrand : BRi = f(Pj) (+) : second-mover
3

Stackelberg : BRi = F(GG) H : first-mover

Example : Reinhard Setten's horse'

pure NE : (D, a , L) , (A , a , R)

SPE : CD, a . L) , (A, a , R)

M PBE : (A ,
a, R) ,

player 3's belief : MD < 5

V3IL) = 2MD < (I-MD) = V3(R)

&CA,a
. PLACR,

"off-path mixing" by player 3.

(*) (D, 9 , 2) not PBE because

player 2 chooses d and

induces outcome1A , d, L



“Sane” P1 plays A to build a reputation of being “crazy”. P2 goes along (rationally); players 
burst the bubble near the end.

In the unique PBE of the “Centipede game with doubt” both players play A in early 
periods, provided μ0 is not too small.
With 14 < μ0 < 12, we get A in all but the last four periods. The smaller μ0 the longer is the 
endgame where players mix.
The PBE is unique — the proof of this is a bit more involved.

Example : PIEISE Application /Centipede with doubt)

=> the unique PBE :



A pub-goer (P1) orders either Beer or Quiche. A bully (P2) sees this and either fights him or 
not. P2 wants to fight if P1 is weak but not when P1 is strong. Only P1 knows his type; the 
prior probs are 20% weak, 80% strong.
Weak P1 likes Quiche, strong P1 likes Beer; neither type of P1 wants a fight.

Extensive - form Refinements
Forward Induction thinking about the rational behinds the

seemingly irrational point : "Why we are here"
BoS with option X

IX , P) : Nash
, SPE , PBE Mpub ? 5)

,
SE

If Bob believes Mpub26 ,
then he

plays P , So Alice plays X . (PBE)

ICafe . C) : Nash , PBEIMcafe = 1)

(*) SE supports (x , P)

for m = 1 . 2. ... let TAM = T Cafe + in Pub + 11-m-in X
, TB* = in Cafe + 11-in) Pub

Using Bayes' rule ,
Bob's belief that Alice has played Pub conditional on having played

either Cafe and Pub"by mistake" is :

Ups = Pr[PubInot XI=
As m -> 00

, T-> X , +-> P ,Mub ->
1

. Therefore , (X , P) withMpub = 1 is SE .

But : Alice guarantees 4 by playing X. By not playing X , she must be expecting more.

OnlyCafe can yield morefor her
. Hence Mpub = 0

Intuitive Criterion

Beer-Cliche game /Cho & Kreps , 1987)

players : Nature , P1 , P2

Histories & Actions :

0. Nature picks PI's type , weak (PIw .
20% ) or strong (P1s , 80 %)

1
.

P1 observes his type ,
chooses either Beer or Quiche.

2
. P2 observes PI's action but not his type , picks Fight or Not.

Payoffs :

Pt get forconsuming favouriteitem foravoiding afige be

Solution :

Beer-Quiche is extensive form.



P1W cannot possibly gain by deviating to Beer (his equilibrium payoff is his maximal 
feasible one). Then why does P2 put at least 50% belief on this type upon observing a 
deviation to Beer?

"Dooling" PBE where both types
of P1 have beer

.

"Pooling" PBE where both types
of P1 have quicke

-> player 2's choice WE :

"Wif P1 chose Beer
, I if

P1 chose Quiche"

Payoffs written in each cell

in the order PIs ,
PIw . P2 .

↓ Pure NE : (BB . NF) .
(20 , FN)

player I's choice xY : "X if strong , Y if weak
"

PBE beliefs for (BB , NF) :

P2 : PrIPIs/Beer] = 0 . 8 => P2 doesn't fight after Beer

free to choose PrIPIsI Ciche] <= => P2 fights after Cenriche

PBE beliefs for16C, FN) :

P2 : PrIPIS/Quiche] = 0 . 8 => P2 doesn't fight after seniche

free to choose PrLPIs/Beer] <= => P2 fights after Beer

P1 playing BC or &B : incentive to deviate

Sequential Equilibrium construction :

for pooling on Beer for pooling on Quiche

N BB F ?F ad N

As m -> 0
, MBLM) -> 0. 8

, Malm) -> 0 (in both case)

counterintuitive !



Conclusion (Intuitive Criterion)
upon observing adeviation , put zero weight on types whose
equilibrium payoff exceeds all possible payoffs from deviating
l assuming opponent's action is rational for some beliefs

Divinity and Stategic Stability

Di , D2,

Universal ...

Trembling-
Hand Perfection
-> strategic

Stability

That is ,

* is stable if it is

trembles as the trembles vanishthelimitofNashequilibria subject to any tyoa



Spencian Signal
Thorstein Veblen (1899) : conspicuous consumption, Veblen goods

(waste to display status) I demand increases with prices)
Potlatch : feast to display wealth

Michael Spence (1973 ,
2001 Nobel) : formal model

Spence's (1973) signaling game
1
.

Nature picks worker's type Of 302 , On3 ; PrP = OM = x

2
.
Worker observes O and choose education level e?0

3. (At least two) firms observe e but not O and zet wage W.

4. Worker accepts at most one offer .

Worker's Payoff : 10-e10 , zero outside option
Firm's payoff : O-W if itemploys the worker .

O If it does not.

PBE : (210)0: Oc . On . Wiel eco , Mie)eco)
,

whereMies = PrIO = Onle]

Find all PBEs -> apply the Intuitive Criterion -> Select a unique outcome

Example of a pooling equilibrium Example of a separating equilibrium
(both types set elp) =

*
=> M(e

+

) =x)
W L

W L H
H : W -e/O On

On

xOn+ (1-x) PL ⑳

OL wY(2)

OL W
*

(e)
e

IOn-0l) &L CH IPH- P2) OH
e

e
* XIPH-OL) OL

Whe
*) = xOn + 11-x) PL

for other e'Fe*, let ce= 0
, therefore wel = Oc

check O* < X IOH-P2)Oc , otherwise Oc deviates toe= 0



Weeks 5 :

Bargaining, Evolutionary Games

Bargaining : Nash's Axioms & Risk Aversion

Noncooperative Bargaining Model
Evolutionary state strategies (ESS)

the Replicator Dynamic3)Stochastil Best Reply Dynamics



Bargaining
Cooperative Game Theory : specifi reasonable conditions solutions should satisfy

without writing downfull details of bargaining process

Non-cooperative Game Theory : write a specific bargaining game and analyze
using tools studied earlier interm

X = set of possible agreements Ha

D = disagreement Boundary (2)

playerI has utility function Mi : XUD -> IR

Disagreement Point : d= (ch . d2) , di = HILD)

U = ((((X) , U2(X) : x EX) Ud

Assumption : der ↓
if no agreement

& = IV,, U2) EU Sit . Visc ,
V2 > da ⑳ W

U is convex , closed and bounded d= (0 , 0)

A bargaining problem is a pair (U , d) the Bargaining Set

Nash's Axioms

Let F be a function which assigns a unique outcome FIU, d) Er

to every bargaining problem (U
, d)

1 . WP (Weak Pareto Efficiency)
ifu= F(U,

d) there does not exist (VI . V2) EU such that ViIM and U2 U2 K 1 Strict

2. Sym/Symmetry)
10, d) is a symmetry problem if d = d and (Vi , V2) EU > (V2

, Vi) EU
.

If (U, d) is a symmetric problem and u= FIU, d) then MFUz
.

3. INV(Invariance to Equivalent Payoff Representations)
Given Li>0 and Bi let :

Vi = Lilli + Bi

& U = SIGN, + Bi ,
22Hz+ B2) : (M , (2) EU)

d' = (Lich + Bi , 22d + B2)

ThenU= F1U, d) > (LiM + B1
,

22H2+ B2) = FIU',
d'

4. IIA (Independence of Irrelevant Alternatives)
If U'CU ,

d = d and FIU, d) EU' then FIr', d) = FIr, d)

Nash's Theorem(Nash , 19503
There is a unique function that satisfies WP . SYM, INV , IIA , namely
V = FCU , d) maximizes (Vi-di)(V2-del Sit . (VI . UzEU . Vizde .

Vada

Proof :
1
. Nash's solution -> Nash's axioms (not necessarily equilibrium
2

. "Unique" : build up from special cases



Uz Uz

#
*

= F(U ,
d) is the mid-point 1

.
U

*
= F(U ,

d) is the mid-point of the

of the hypotenuse (by SYM, NP) hypotenuse (by Step 1 and INV)

-> 2
.

U* maximizes Mil : MHz = M (G-bl)

· U · U
*

is maximizedat m = = (midpoint)

d U d U

U is an isosceles triangle U is a right-angle triangle
and d= 10, 03 and d= 10, 03

Uz Uz abd': right-angle Triangle
Hence Flabd) = Nash solution

· N
b 2IA -> FIU: d) = H = NIU', d')

(Ud)(Uz-dz) =C =) I
INV => FIU, d) = n = NIU, d)

· N

·

d
Hellz= C

O
U

d
.

a
U

General Convex bargaining convexity => uniqueness
problem (U, d)

Effects of Risk Aversion
Utility function U(x) displays constant relative msK aversion if
U(X) = x

0
,

0 < P < 1
, P = 1 corresponds to risk neutrality.

Example : division of pie of size 1 x
o

Pe = 1
lagent I is risk-neutral and

agent 2 risk averse with O < / '
Nash solution : max (11) U21X) = X (1- X)

&

Equivalently : max Inx + placl-x)

FOC : -PT = 0 = = He > t O
I *

Nash solution gives more of the pie to the
risk neutral player (less risk averse)



Non-cooperative Models of Bargaining
Discuss a sequence of models of bargaining process :

1 . the Nash Demand Game

2
.

the Ultimatum Game
3. Offer-counteroffer1 4. Offer - counteroffer with discounting
5
.

Offer - counteroffer with breakdown
6

. Infinitely
- repeated versions

1
.
The Nash Demand Game

players i = 1 , 2

utility functions (i : [0 , 11 -> I

strategies : X
,
X2E [0, 1]

outcome : (X , *2) If <+X2= 1 : 10, 0) Otherwise

Equilibrium : (x , I-X) , (1 , 1)

2. The Ultimatum Game

player 1 proposes a division (Xc , X2) Sit. X, + 1211 , Xi , X2I0

player 2 accepts ()) or rejects (N)

outcome : (X , X2) if Y : 20 , 0) if N

SPE : player 2 accept any offer , player 1 offers (1 , 01

3. Offer - Counteroffer
Round 1 : player I makes offer player 2 says Yes or No

Round 2 : if player 2 said No
, she makes offer and player I responds

SPE : player 1 offers 10, 1) and player 2 accepts

4. Offer - Counteroffer with Discounting
player i discounts future payoffs by Si < 1 per period
offer- counteroffer played once per period

SPE : player 1 offers (1-82 , 82) and player 2 accepts



5. Offer - Counteroffer with Breakdown
No discounting : 8 ,

= 82 = /

If rejection occurs in period 1
, bargaining breaks down with prob L

SPE : player 1 offers 12 . 1-2) and player 2 accepts

6. Infinitely Repeated Offer - Counteroffer with Breakdown
No discounting : 8. = 82 = 1

If rejection occurs in period 1
, bargaining breaks down with prob L

players alternate in making offers until acceptance or breakdown

Define (d) = ( < (d) · *2 d)) and

5 (2) = (1, (2) , - 2(2)) by :

3
Un(2(d)) = ( -2) Uz(52(2x)
m((2)) = (1-2) M(x1(d)

Note that :"- (2) >5 (2) and <2(d) < 2 12)

Stationary Subgame Perfect Equilibrium :

player 2 accepts x = ( X1 , Xz) iff :

l Uz(Xz) - (1-2) Uz(yj 2(2))
playerIaccepts y = (4 1 , (2) iff :

Un(11) = <1-2) M/ :(2))

=> player I always offer <(2) , player 25(2)
=> Outcome : <CS) in period 1

.

proposition 1
,

when 2 +0 , and breakdown outcome is the disagreement point
1d, d2) , the SPE offer (2) is very closeto the Nash bargaining solution :

lim (2) = (M . 12)

where <M . 12) maximizes (th-dscU2-d2) over all Utr

proof : cross multiply : (12) M(*(1) U2(*2(d)) = (1-2 U212(2) ((-1(d)
=> (MKX12K) , U2<2 I) and (M1 121) , U2(y2(2) lie on a

level curve (a hyperbola) ofthe function MUL
Uz

1/ (M((d)) , U2152(d)) / < (d) -<(2) => 0 as 2-> 0
L

=> both 12) and y's converge to n

X (M1(2)) ,
U2(z(()

O
·



7. Infinitely Repeated Offer - Counteroffer with Discounting
SPE : 3U2KY2=S2U2i
proposition 2 :

If 8 . 82 very close to 1 the SPE offer (2) is very closeto the

generalized Nash solution :

max ((X) 5) U2(Xz)
, where Pi = -enSi

Sit . XitXz[ 1 , X1 , X2PO

proof :

(*) Kalai-Smorodisky CKS) solution

an alternative to Nash bargaining solutions :

1 . U : two-player bargaining set

d= 10 . 0) : disagreement point
2. Hit = MAX Mi : <M, Uz) EU ,

= = 1 ,
2

3 . Among all pairs (M , U2) Er sit
. Mt = M ,

let Im, 2) be

suchthat= it is a maximum

properties : 1 . not satisfy Nash's independence axiom

2 .
linear growth of each player's gains as pie grows



Evolutionary Game Theory
Evolutionarily Stable Equilibrium: Static idea intended to capture
robustness to invasion by mutants (shocks , pertubations
Explicit dynamics :

1 . Replicator Dynamic (deterministic) Another Definition for ESS :

2 . Stochastic shocks 2
*

13 Essiff U 2 + 2*, there is ET0

sit. U EEIO, E) , we have :

Biological Framework W (2*, (1- 8) 2
*
+ 2E) > U(d , (1-2)2

*
+ 22)

- a large population of individuals or organisms
- each endowed with a behavioral strategy, inherited)
- play a given two - person game in randomly assigned pair
-payoff is an individual's rate of reproduction (Darwinian Fitness)

A two-person symmetric game G:

A = action space
ua, as = payoff to an a player when the opponent plays a

pure strategy : an action acA
< mixed strategy : a probability distribution over actions , a

&MonomorphicPopulationeventhehasthesamestrategystrategies
Evolutionarily Stable Strategies (ESS) : static concept

"a strategy is Ess"

NE about strategy portfolio"
A strategy 2

*

is an ESS if the following two conditions hold :

One 1 . (2*. 2*) is a symmetrz NE of G also : Uld*, <*) U(2 , 2
*
)

Definition 2 . If &F2
* is a best response to 2

* (U18,
<

*

) = U12*.2* 1)
,
then

W (B,B) < W(2*, B)
=> (2*, 2

*) B a strict NE if UB + 2*, UIB . 2
*) < Uld*. 2* ) => 2

*

B ESS

=> mixed NE cannot be strict

Example 1 : Dynamis with population growth
A b

a 3 :2 00 P : proportion playing a -> (a, a) . (b, b) are ESS

nt) = size of population at time + (time discrete)
Halt)

, holt) = number of aplayers/b-players at t

=> Halt+ 1) = x [2pct)] Halt) + Halt) IPL : fitness (expected Payoff
UbC++ 1) = x [1-prt>] UbLts + MbLt)

x = proportionality factor (depends on time scale

=> p< 5 is the basin of attraction of p= 0 :P 5 for P = 1
.

I set of points from which converges to p = 01

It could be that A is Ess
,

but couldn't resist two mutants' invading strategy simultaneously.



Example 2 : Hawk-Dove Game

A P A : aggressive. 4 : Passive
P A VIC , v V O V: value of resources

1p4 0. V E
,
E

S
c : cost of fighting

>C : (A , A) is a strict NE and Therefore an ESS

V < C : (vIc , 1-VIC) is a mixed NE and an ESS
.

for any value p . B B

best reply to 2*

U(2+, 2π) = U(B ,
2

*)

indifference condition

Example 3 : some games have no ESS

A B C
claim <

*

=1 5 .
5 , 5) is the unique

A 2
. = + 11 1 1. -1 symmetric NE => Only possible ESS
· - , lB -

,
,

1 ,
-1 It Any pure strategy a : U(a , a) ==< U(2*, a)=

and is best response to 2
*

ConditionalStrategies
One approach to defining ESS for asymmetric games is to

symmetrize' the game
consider a two-player game C (not necessarily symmetric) :

plays 2 and role 2 plays &Wild. B) = Payoff to role i when role 11
suppose the ex ante probability of being in each role 13 :

T = (T1 . T2) : conditional strategy portfolio
Define the two-person symmetric game with payoff function :

Intruder
UI (Ti , T2) . <T1 .Tr) = 2UilTi , Tz) + 2UzITI , T2)

A P

owner
A V-C V-C

v, O
=> (A . P) B an ESS .

2 2

Po, V E, if CIV

proposition : A conditional strategy(T, ↑) is an Ess if and
only if i is a pure strict equilibrium of game C

N

E t S is an Ess of a symmetrized game iff
S is a strict NE in the original game

P1 : How P1 : Col

P2 : Col P2 : NOW



The Replicator Dynamic
Let G be a symmetric two-person game with m actions

Payoff matrix A = (aij) is m x m

aij = payoff to row when how plays i and column plays ;
hict-number of individuals programmed to play action ai at time t

- 2(t) = ITh Milt) = total member of individuals at t
- Pict) = Wilt) / mt) = proportion of population playing action i at time t

Ttilt) = average payoff to an i player = Jjm, dijPj

Evolutionary Process :

Hittl) = hilt) + XMilt) Tilt) = Wilt) + XWilt) [,
M

, dijPyLt) = Wilt) (1+ x [Ap]i)
where x = scale factor (small) that depends on time length of periods

=> Mt+ ) = U() + x [m[PiltMt) Iyv dijPjlt)]
= Lets + <Mt [i,jPilt) GijPjH) = Mt (H xpAp")

where pAp is the growth rate of the whole population : payoff of p against itself

Pict+) =M = MULINEARi = Pict) + x Pilt) (IAP]i -PA

pi = dirt) = Pict+l)-Pit average payoff among all strategies essentially
=> pi = xPi([Ap]i-PAPY Replicator Equation

proportion playing i grows if it achieves a payoff greater than the averse against
the population strategy.

(*) If there are only 2 strategies 1 and 2 , played with p and I-p respectively , then the

replicator equation forp can be written as :

↑ = PU-P) <[Ap3 -
- [AP]2)

Intuition: strategy 1 does better than the population average if and only if it does
better than strategy 2

Example : a b
Picture of dynamics :

o 13 1PA 2 , 2 0 , O

b 0, 0 I , I

replicator equation : - = P(IP)(2p-(1) = PC - P((3p- 1)

an ESS is asymptotically stable under the replicate dynamic

Example : Prisoner's Dilemma

C D ,
where C = cooperate , D = defect

6 3. 3 0 . 5 infinitely repeated Prisoner's Dilemma => infinite strategies
D 5 , 0 1 , I Focus on three strategies :

payoff matrix for 2 : cooperate unconditionally
infinitely repeated & D : defect unconditionally
PD with stopping
probability S/ < E) 7 : start by cooperating , defect if opponent defected

C D T
in previous round, otherwise cooperate

C 3/5 O 3/5
In each encounter between the two players :

D 51S 1/S 4+ 1/3 First round occurs for sure

7 313 15-1 3/S 3 Each subsequent round occurs withprobability /-s
.



Replicator Dynamic in Infinitely Repeated PD

D

If there is a sufficiently high proportion of
7- players initially , the evolutionary process

converges to a mixture of 7- and C-players

Otherwise: converges to all D-players(likely
C T

Randomness in the Infinitely Repeated PD
1 . Payoffs from a given interaction are variable

2
. Matching is not perfectly uniform

3. Number of children is variable
4. Mutations occuf

Resulting process is a stochastic dynamical system
(*) When the population is large these sources of noise are small

in the aggregate ,
and are well-approximated by a Normal

random variable

Best Reply Dynamics stochastic stability
Framework : 1 . player from large population randomly matched

in pairs to play symmetric game.
2

.
each period a randomly chosen player is allowed
to revise their strategy , who chooses a best response
against the current distribution of opponents.

DefinitionI absorbing states) : never leave once reach ·

"13
- ⑳

O 1

Stochastic Best Reply Dynamics :

s choose a best reply to the distribution of opponents . pr = 1-E

choose a non-best reply, pr = E

1 . Long-run behavior doesn't depend on initial conditions

probability that i people are playing strategy a in any period converges
to a constant TTi , Di is also the long-run proportion of periods i people play a

follows from theory of Markor Chains)
2

. E small -> most time hear pure equilibria (all play a or b)

mistakes cause to move between occasionally , a harder to escape.

(a , a) is the unique stochastically stable equilibrium



Argue that the only absorbing states of the process correspond to the pure strategy Nash 
equilibria of the game.

Example : the Stag Hunt <Risk dominance and Equilibrium
Main idea :

R S 15, S) : Pareto-dominant cost for all S to all R : e

up) R 3 : 3 4, 0 (R. R) : Risk Dominant cost for all R to all S : e

S 0. 4 5, 5 stochastically stable comparee' andsite basin of attraction

R is best reply if 2# .
S is best reply if p=* S R

All R has the larger basin of attraction )
O 1/4 1

the risk dominant equilibrium is

the unique stochastically stable equilibrium
if the population is large) population same for row and col

Relationship between ESS and RD :

p = f(p)
p is a steady state if f(p) = 0 (p = 0)

E p is a stable steady state whenever we're near p , we stay near p

p is asymptotically stable iff whenever we're near p , We end up at p
p

Mine p

1 . Every NE is a steady state of RD

2. Every stable steady state RD is NE

3. Every ESS is a asymptotically stable steady state of RD

LESS is robust with disturbances

RD and MarkovChain :

=> O State s . We can construct a path so that it ends up at an

absorbing state (just wait long enough)

Markov Chain : Stochastic stability :

I -7 nothing is stable people makemistake)
NE

#" absorbinga "stable" = stay for a long time

states



Weeks 6 :

Information Transmission

Reputation andStackelberg Payoff
cheap Talk | Crawford- Sobel



A sequence of short-run players (Et, t = 1,...,T) to play against a single long-run player (I).
Each Et decides whether to enter (In) or stay out (Out). Player I chooses fight (F) or 
acquiesce (A) whenever Et enters.
All earlier actions are observable; the payoffs are below.

Suppose that I is either “sane” (with payoffs given in the game), or “crazy” (commitment 
type), always playing F against an entrant.
I knows whether he is sane or crazy, Et does not.

signalling games : proving who you are

reputation building : pretending someone you are not
(a long-run player with commitment types)

communication :
how to convince a listener with a conflict of interest

Ti
Aristotle in Rhetorics (347BC) identified three means of persuasion :

T logos (appeal to evidence and deduction) : persuasion gamesI

B 3 ethos (speaker's credibility) : cheap talk games ****

*** Pathos (listener's emotion) : not aware of games yet

Reputation

if <E * finiti , the unique SPE by backward
induction is (In, Al

Et

But : would you enter as Es if I fought
E' and E before you ?

Denote the belief of Et that I is crazy by Et.

EF < 0 is the prior probability of I being crazy.3 PBE <beliefs consistent with plays , it is the expected probability
of I being crazy at the beginning of stage +.

Find the unique equilibrium (PBE) working backwards (assume T=2) .

If E enters then same I plays A , crazy I plays F.

E enters Whenever -1) + <1-ET-1<0 , that B , if EcE

Working backward
, we now determine PBE at t = 1

:

Claim1 : if E'. 5
,
E plays Out ; however

, ifE' comes In , then player I replies with F.
In either case,

= E' , and so E stays Out.

Claim 2 : if E' < E and E' plays In then the same I mixes F and A at + =
1
.

Claim 3 :Suppose &' and E' plays In. If I plays A then
, att =2

. E plays In. If I plays F then

Emixes In with probability :



As T → ∞, the average payoff of the sane, 
long-lived player I converges to 2, as if he 
could credibly threaten with F .
Possibility of “crazy type” allows I to get 
his Stackelberg payoff. Same is true in any 
game between a long-run and a myopic 
player:

Intuition of the claims :

1
.

Same I must not imitate the crazy type 'too perfectly'.
Ifsame I plays F with probability I (likethe crazy type does) , then playing F

does not build a reputation for craziness.

2
. When same I invitates the crazy typeat += 1 (by Playing 7) , this act

would not deter E with probability I
, becausethen same I would be

tempted to overuse the deterrent. ***

Complete the derivation for S' <E :

1 . Same I mixes at t= 1 to make E indifferent between In and Out.

Let of be same I's probability of playing F at T = 1
. By Bayes' rule :

El
& = Pr/crazy /F att= 1) =

2 + 11-8) q
E is indifferent between In andOut iff 3 = E.

Hence I needs to set q = gi
2

. If E' enters then crazy I plays F at += 1 with probability 1
,

and same

I does the same with probabilityq
The total probability that I plays Fat + = 1 is : S+ 1 +2)q = 2E'

=> E' plays Out iff this probability exceeds -, that is , iff E's I

DBE of Chain Store game with reputation , T= 2

I invitates type crazy to build reputation

E mixes strategy In and Out

characteristics of the unique PBE for any T>2.

1 . E staysOut iff E< it
,

which goes to 0 as 7 ->

2
. If E' comes in , I plays 7 with probability 1 iff E' > 27 -

3. For all 1
, if I has fought all earlier entrants then "stays Out with positive

probability. If I ever played A , then Et comes In for sure.

If I ever plays A then he will play A from then on. Otherwise he keeps playing
7 with positive probability.

illustration : 7= 4
,

8 = 0. 1



1. Nature picks random state θ ∈ [0, 1]; P1 learns θ, P2 does not.
2. P1 (he) sends a message m ∈ M ; set M is rich, e.g. contains [0, 1].
3. Having observed m, P2 (she) picks y ∈ [0, 1].

Conflict: P2 wants to pick y = θ; P1 wants her to pick a bigger y. 
Formally: u2 = −(θ − y )2 and u1 = −(θ + b − y )2 with b > 0.

Application / interpretation:
P2 is prime minister, P1 is expert;
P1 knows optimal policy, θ. P1 has known bias, b > 0. (Ideology, self-interest, etc.) 
Advice has no direct payoff implication unlike in signaling.

We say that an action y is induced in state θ if some message m with s2(m) = y is sent in 
state θ with positive probability.
An action y is induced if it is induced in some state.
Messages have no meaning; only induced (re)actions matter.

Crawford-Sobel cheap talk game
Vince Crawford and Joel Sobel (1982) :

Equilibrium <PBE) :

1 . PI's strategy is Si : [0 , 17 -> ACM) = mix over M

2
. In equilibrium P2 replies by S2lm) = ECOIS, CO) = m]

3. S, 10) is a mix over h's maximizing - (P+ b-Salms)

Messages and Induction:



Ex ante, both players prefer equilibria with more communication. (Expected quadratic loss 
= “variance” is smaller on a finer partition.
Is this a good explanation for polarized/ simplified/ brief communication?

If θ is provable and P2 has an action that all P1 types dislike, then there is a PBE with full 
revelation: the highest-type P1 must prove himself, all lower types compelled to do the same.
Falls apart if message is observed with noise.

Example: Uniform , two induced actions

y y
"

O O
* O+ + b 1

0 , y

Equilibrium i' is induced in states O O* and action y " at 6 O*.

P2's best response : 2 = ***, Y" =
O*

PI's rationality : O
*
+ b = 3 + y"

2

=>
*

= 2-26
,

Two-action PBE iff b=I

Proof that the number of induced action is finite:

Discussion

Talk is cheap , yet it can be informative3 Infinitely many states, but only finitely many induced actions
greater bias => fewer actions can be induced in equilibrium)

Directions pursued in the literature
1 . (partially) verifiable messages

Messages with meaning (not allm can be sent (



Comparative equilibria exist in which P1 reports a ranking of dimensions (e.g., “θ1 > θ3 > θ2”) 
but not the levels. As n → ∞ this amounts to full revelation (Chakraborty & Harbaugh, 2007).

2. Communication over multiple issues
Multi-dimensional state

, O = CQ .... On) with If Oi < 1

Game : 1 . Nature picks .... OK E [0,1]
· distributed ii. d.

32 . P1 sends a message me to, 13

3. Having observed m, D2 (shes picks ye To , 13 K

Payoffs m = - [1 <Ok+ b - Y k)" ,
U2 = -I (8K- YK)" ; b > 0

=> if b is small then P1 and P2 can communicate via finitely many messages
along each dimension via Crawford & Sobel

=> No informative Crawford-Sobel partition equilibrium if b is large

3. Communication with multiple experts
=> harder for experts to bias decisions (Battaglini 2002 , Ambrus & Takahashi 2007

Game: 1 . Two experts (P1 , P2) know the multi-dimensional state
,
PE EIRK

(2 . P1 and D2 simultaneously send messages Is MzEIRK

3. Receiver (decision maker PO) sets y EIR"

Ideal reaction of PO : 1= 0 ; the experts have known biases

How much does PO gains by comparing the experts' reports ?
Let BirP) = SyEIR" : Expert i prefers y to 0 in state &3



Example : Three-way allocation of a budget
Expert] biased towards Politics , expert 2 biased towards Philosophy. Bilk) is the
set of policies that i prefers to the policy y = 0 in state P .

To get the truth from the experts is

possible if 60. 0" EQ , EGED Sit.

↑ B, (0") UB210)
.

If 0 = 0"
. one of them is lying.

po can punish both without knowing
who's lying by setting i * B. 18") UB210'

Alternative : ask P1 the correct split
between Econ and Phill and P2 about
the Split between Econ and Pol- neither
will lie

, you infer O .

↳ Communicationovertileasagalandagain:comparereportswithearliere of m



Weeks 7 :

Auction

Auction Formats & Equilibrium :

&ConsGames: Winnersa

Auction Design : Case Study
Efficient Mechanism Desi



Common Auction Formats
1 . First - price sealed-bid Auction

- Bidders simultaneously write down their best-and-final' bids

- Higher bidder wins the object and pays the bid he wrote

- e.g.. oil , mineral rights ,
real estate

,
construction , procurement contracts

2. Dutch Auction
- Price starts high and gradually falls until one bidder agrees to buy the

object at the price.
- e. g., flowers in Holland, some fish and agricultural products.

Above are the same game.

3
. Japanese Auction (Ascending Auction)

- price starts low and gradually increases until only one bidder left.
- Highest bidder then wins and pays own bid

Coins Game : the Winner's Curse
The coins game is Common Values' :

the actual value of the prize is the same forall bidders , but different
bidders have different estimates of this value.

suppose bidders act as if the value of the coins is their estimate of
the value before any information is revealed by other bidder's behamour.

Then the winner is likely to have paid too much.
If you win , you probably had the highest estimate.

You should drastically shade your bid below your initial estimate in this auction.

Wallet Game (phone numbers
Pure Common Values : Ascending Auction (
Symmetric Equilibrium.

Type zi quits at same price as opponent type Ez = E

If type z) wins at her quitting price, blzi) , the

type she will have beaten 22 close to z1
.

=> Typez1 of player I quits at price b(EI) = 2E,
.

independent of distributions of z1 and Ez.

c Pure Common Values : Sealed-bid Auction
Those without information : should bid zero

Those with information : depends onthe distributions
e.g. if Z& E2 are independently and uniformly distributed on [0 , K]

, for any K30,
then ,

in equilibrium , bidder i bids zi
.



– The eventual value of the object will be the same for all bidders, but different bidders 
may have different estimates of this value
– Each bidder’s estimate of the value would be altered by knowledge of other bidders’ 
estimates

– Each bidder has some value for the object (i.e., maximum price she is willing to pay) 
which does not depend on the information or values of other bidders

Asymmetric Case : Ascending Auction (

E Prize
BV = Z+ 22+ E1 if Bidder I win

Prize is V2 = E+ E2 if Bidder 2 wins

=> Bidder I bid 12 more than before
If she wins at price p, she infers E2 = P12 , Vi = E, + + 1

So she will bid until p = Vi => P = 2Z1 +2

=> Bidder 2 quit E2 earlier than before
Now if bidder 2 wins at p ,

she infers E = (p-2)/2
So her value V2= (P-2)/2+ Ez = P => P = 2 Ez-2

=> Bidder 1 bid 84 more than before
=> Bidder 2 quit 24 earlier than before
...

=> Bidder 1 never quits . Bidder 2 quits bidding at price = Ez
.

Polar Cases of Bidder Value
1 . Common Values

2. Private Values



Formal statement (Revenue Equivalence Theorem)
“Assume each of n risk-neutral potential buyers has a privately-known value (or 

signal in the common-values case) independently drawn from a common distribution 
F(z) that is strictly increasing and atomless on

Then any auction mechanism in which
(i) the object always goes to the buyer with the highest value (or signal), and
(ii) any bidder with value (or signal) z expects zero surplus
, yields the same expected revenue, and results in a buyer with value (or signal) z 
making the same expected payment.”

• UK auctioned 5 licences and UK had 4 strong bidders (incumbent operators)
• Netherlands auctioned 5 licences but had 5 strong bidders (incumbent operators)

Auction Design : Case Study
Key problems in Auction Design :

1 . Collusion / Coordination (including auctioneer
2

. Entry Deterrence

3 . Subjecttol&2,reveal information
e

standard economis appleset

Revenue Equivalence Theorem:
All auctions withno reserve price yield the same expected

revenue for the seller .

[ z , =1

1 . All auctions with a suitable (public) reserve price yield the
maximum possible expected revenueforthe seller
Moreover ,

absent collusion problems , using a reserve price typically only makes
much difference if you have very few bidders

2. These results don't usually apply if more than one object is sold.

3. Other caveats :

- asymmetric wallet game

UK 3G mobile phone auction
5 mobile - phone licenses on sale

Bidders each allowedto win at most 1 license

Ran (simultaneous) ascending auction (prices rise until only 5 left)
13 bidders entered , raised 122 . 5 billion = 2 .5% GNP

Crucial details in UK and Netherland cases

weaker companies have no incentive to bid in the Netherlands case.

- Denmark : sealed-bid auction successfully 14 licenses , 4 incumbent bidders (
- Austria : 6 bidders for 12 lots

, ascending auction

Bidderspermittedtowinloteacher 12 units in total

=> Collusioam



Why Ascending Auction rather than Sealed-bid Auction in UK ?

Simultaneous ascending auction likely to be efficient if can attract
entrants & prevent demand reduction

In UK 3G auction :

1 . Bidders allowed to win 1 license only => no scope for dividing spoils
=> Demand reduction/collusion not a major worry

2
. 5 licenses , incumbent bidders , so at least one license goes to entrants

=> Entry not a major worry

Abilities firms require to collude :

1 . agree division of market
2.
detect defection from agreement

3
. credibly punish defection

4. deter new entry

Even badly-run auctions are usually better than the alternatives

Northern Rock Bank Run(2007 .9)
Bank of England wanted to sell multiple types of loans to commercial
banks , building societies 1 Type = quality of collateral used by borrower)

D 6-month loans against 'poor' collateral
, e . g., MBS

& 6-month loans against 'good' collateral
,

e. g., UK government bonds

Total allocation = 22, 500 million

NotrunningaseparateauationForeachVariety ooa



2. Not running Simultaneous Multiple Round Auction (SMRA)
as pioneered by Paul Milgrom and Bob Wilson (

But :

I may taketoo
longasion / Predation

hard to allow the mix of varieties sold to depend upon the bids

Product -Mix Auction

① Bidders for spectrum licenses are oligopoly
=> entry & collusion/coordination are 1st order issues

use game theory models / insights
· Many potential bidders for loans in UK

=> entry & collusion/ Coordination not 1st order issues

=> focus on making bidding easy and efficient to extract information
and implement competitive outcome

use competitive models/insights

Product - Mix Auction : 1 . each participant simultaneously states preferences

S sealed bid auctions for multiple units of
multiple differentiated goods

2 . implement competitive equilibrium allocation

price
competitive market)

S

V
1 . BoE pre-determines

its supply curve

P
2. Demand inferredfrom

bidders' bids

D
crelative) Demand

cenantity
A consumper who reveals she
has value pays price P .

Theorem : under some conditions , the Product Mix-Auction achieves an

efficient' allocation. All bidders ,
and the auctioneer , get exactly

what they would have chosen at the final prices.

Bidding is efficient , informative and easy

#) Another case mentioned in lecture : Ecosystem for Turtle Doves



Each i receives the sum of the other agents’ gross (pre-transfer) payoffs in the efficient allocation 
computed at the reported types, minus a transfer that may depend on the others’ reported types.

Efficient Mechanism Design
I . VCG Mechanism : Efficient mechanisms with transfers
2

. Gale-Shapley Algorithm : Stable matching without transfers

END under private values (Ui only depends on Oi but not Oj)3 with transferable utilities

Elements x of set X are various social decisions.

Agent is utility measured in money : Ui(X, Qi) + Di for IEN=

Oi is is type (private informations and pi ther transfer received

Is there a way to carry out the socially efficient decision rule,
**(0) = argmaxxex Iien MicX, Oil for every state P = (Oi)ieN , without
directly observing O

.

Applications : auctions (xEX describes who gets what

public good provision (binary x shows if the bridge is built)

VCG Mechanism

Vickrey (1961 : auction) ,
Clarke (1971 : PG) . Groves11973 : general

VCG with Til-i) =O is called theteam mechanism



Suppose I agents are interested in buying K identical goods.
Each agent has decreasing, privately-known marginal valuations. 

Notation: v1i > . . . > vKi are i ’s valuations for kth unit. 
Ex-ante distribution of vki won’t matter, hence ignored.

proof : Rewrite efficiency of ** as follows.
For all Oi, Fi and X ,

UilX
*

(Oi
,
%-i) , Pi) + IjFiUj(** (Oi, i) , y) = WilX , Pi) + [jFiUy(X , Ty)

In VCG , if is own type is ki ,
and her and the others' reports are Fi and

,
then

is payoff : Ui(X
* [i. -i) . Oi) + IstiUy (X

* <Fi ,
-i) ,y) - Mili)

which is highest at Ti = Oi by the efficiency of
*

as written above

Vickrey's Divot Mechanism (Nobel prize 96) :

Pivot Mechanism : VCG with TicT-il = maxxex [j+i Uj(X,3)

Vickney payment : in allocation *** ) , player i plays :

- D+** (8) : = MaXxex[jFiUy(X, 2) - [jti My (X
* YO)

, Yp)
(the effect of her presence on the welfare of others)

Hence ,
is net payoff is her marginal contribution :

mil) = IjeNUj(X* (O), y) - maXxEx EgFiUj) X ,Ey)

single unit for sale : Second-price auction (winner pays the second-highest
bid) , it's optimal to bid truthfully-

Vickrey's auction for Kidentical goods

Vis ... V

Vi

proposition : it is weakly optimal for i to submit v = Vis
, UK-K.

observation : 1 . the price a winner pays is not the highest rejected or

lowest winning' bid; each i may Day different prices·
2

.
is bids don't affect how much she pays , only whether she wins

3 . Principle : pay your externality (the bids you crowded out

Example : 3 people for 3 apples.
A : Sp . 2D . 0 A pays 5p for her apple.
B : 7p . 6p . 5p B Days 4p + 2p for her two apples.
C : 4P . 0 , -67



Typical problems: 
match young children to primary schools
medical residents to hospitals
donated kidneys to patients.

Common characteristics: 
Participants on both sides of the market may have preferences over potential matches. 
They may lie to gain advantage. Monetary transfers are not allowed.

Ausubel's auction (a real-time implementations
open-bid , ascending - price counterpart of Vickrey's K-unit election.

=> Trust

Some known issues and recent solutions to UCG

1 . UCG requires private valuations / vi not to depend on kj)
Dasgupta & Maskin (OJE , 2000) extended the computation of Vickrey
payments to interdependent valuations.

2
.

VCG can bemanipulated by players colluding (merging) or a

single player pretending to be two or more players
Collusion - proof mechanisms : Che & Kim (Econometrica, 2006)

3. VCG itself does not accommodate dynamic problems with players
arriving & leaving and surplus generated over time. But see :

Athey & Segal (Econometrica , 2013 : dynamic team mechanisms

Bergemann & Valimaki (Econometrica , 2010 : dynamic pivot

Market Design for Matching
Matching and market design



Motivating example :

Allocate Keconomics tutors (new APs) to K Oxford colleges.
Each tutor is able to rank the colleges in a strict

, transitive order

Each college has a strict ranking of thetutors

Monetary transfers not allowed
Task : stable pairings establishment

leach tutor to be matchedto a college in such a way that no tutor would prefer a

different college and that would also prefer him over the tutor allocated to them)

is there an algorithm in which y tutors/collegesstatepreferencestrue thea

Gale-Shapley deferred acceptance algorithm :

properties : 1. If every participant behaves thithfully , then the

Gale-Shapley algorithm leads to the stable matching
that is optimal for the side that makes the initial

demands (here : tutor-optimal
2

.
It is dominant strategy for tutors to tell the truth.

3. If there are multiple stable matchings , then the receiving
side (colleges) can manipulate to obtacn their favorite pairing

4. If there are multiple stable matchings ,
there's no

stablematching algorithm that's impossible to manipulate



Top Trading Cycle (TTC) algorithm (David Gale)
1

. Each tutor points their 'top' most-preferred college I could betheir

own) , and each college points to their default tutor.

2. Identify cycles : carry out the suggested trades and remove the

participants. Repeat from step I till done.

Theorem : truth-telling is dominant , the outcome is stable



Weeks 8 :

Repeated Games

Folk Theorem & Perfect Folk Theorem
Renegotiation
Firit Repetition



Repeated Games in Practice :

1 . Social worms , customs, threats , punishments , renegotiation and revenge
2

. model facit collusion (JEE) among firms in an industry

Framework : A stage game played a firit/infinit number of times.

In period+, each = = 1 . ... simultaneously picks stage
-

game
strategy ai +Ai for stage payoff lica) EIR

,
where a = (ai , A - i)

Notation :

1 . Denote player is stage-game mixed strategy by 2: and is expected
payoff when playing ai against the others' mixing by Ki(ai , 2-i)

2. Denote the state-game action profile played at t by at = 1ai, ... An
The history of play at timeI is hi = 1 a' ,

. . a+1)
payoff = 1 + 1 + 1 +... (discount : 8)

Definition : =>
1 s

x (- S

fies an action (pure or1 . A repeated game strategy for player i spea
mixed) in each period t as a function ofthehistoryathe

2
. Payoff : 8-discounted present value of s ame payoffs ,

where SECO, 1) is the probability of repetition times the discount factor .

3. Average Discounted Value (ADV) :
ADV+ = (1-S)-PU+ (definition)

ADV recursive : ADVI = 11-S) · Today's payoff + S . ADV++

For infinitive repetition : ADV = PV . (1-8)

ADV of "v for k periods , then v forever" : (1-S"V + S'V'

interpret as weight here

Folk Theorem

Payoff constraint 1 : Feasibility

1 . Players generate such (V..
... Un) via Public randomization device

2
. Coordinated Cycling' over pure outcomes ofthe stagegamevi.... Un) can be approximateaFor any s , if the number of repetitions is

arbitrarily closed in ADV .



Payoff constraint 2 : Individual Rationality
Player is minmax payoff is vi = mina, Maxai Hi Li , 2-i)

If all players other than i coordinate on punishing i
, but I knows this and gives his best

response , then I gets Vi
.
)

Example : a contribution game

Three comments on minimax strategies and payoffs :

1 . When i minmaxes i , player is payoff may be less than vi ) Player i plays strategy
(punishing others can hurt more than being punished !) that minimizes player is

2. Minimaxcing) strategies may be mixed. Example :

rational payoff

proof : (coincide lower and upper bounds)

3 P7 can hold P2 to 0 Payoff by P1 mixing 50-50%, So U2[0

P2 can guarantee O payoff by P2 mixing 50-50%, So V220

=> Hence Uz = 0

FolkTheorem for Nash Equilibria

But not credible

So that nobody wants to deviate



Perfect Folk Theorem
Subgame Perfection
NE is not the right concept in repeated games because it allows

players to use threats that are not credible.

Example :

Folk Theorem suggests how to sustain18. L) in a NE of the infinitely repeated game if 8 is

closeto 1 : If P2 deviates. P1 "punishes" her by playing D forever not credible !

More reasonable : Subgame Perfect Equilibrium (SPE)

play NE in every subgame , even in the continuation after adeviation
subgame : continuation after t
stage game : at t"But

: playing stage-game Nash at every t is of course SPE.

1 . Grim Trigger' in the Prisoner's Dilemma
unique NE of the stage game : LD, D)

Hence : (D. D) in every period is SPE for
any repetition , any 8.

.

Infinite repetition : Any feasible (1 , Uz) = 10. 0) B in SPE for high 8.

In particular, Wi / VL) = I can be sustained in SPE for 822 :

splay 2 at += 1 and as long as both players have played C.

if someone plays D , play D from then on forever.
I doesn't deviate iff. 1 = (1-S) . 2

,
i..e. 8 I)

Clever Tool/notation : Automata
Automation :

boxes : states
(representation) arrows : transitions



• Suppose towards contradiction that player i’s repeated-game strategy si cannot be 
improved in one step (at any t, after any history ht), yet i has a strictly better strategy si′ 
at a particular t and history ht.

• Due to discounting, payoffs far in the future make little difference. Any gain is less than 
∆ in present value from payoffs after t + T∆.

• Therefore if si′ increases i’s payoff (from that generated by si) by ∆, then it should do so 
in finitely many steps (within T∆ periods).

• Let’s suppose si′ which improves on si by ∆ in present value differs from si for some 
histories at t, . . . , t + T∆, but it specifies the same action as si does for all histories 
from period t + T∆ + 1 onwards.

• Consider strategy s′′, which agrees with si′ for all histories in periods up to and 
including t + T∆ − 1, but agrees with si for all histories from t + T∆ onwards. (So s′′ 
reverts to si one period earlier than s′i.)

• In period t+T∆, after any history, si′′ = si cannot be improved by a one-period deviation, 
hence s′′ is weakly better than s′ from then on. Since s′′ agrees with s′ before t + T∆, it 
is weakly better than s′ at t. 

• Therefore s′′, which deviates from si at t for only T∆ − 1 periods, is strictly better than si 
in period t at history ht .

• Repeat the argument T∆ times, each time shortening the duration of the deviation from 
si that improves it at t, history ht. Eventually we get a one-period improvement, a 
contradiction proving the claim.

2. One-shot Deviation Principle
A proposed strategy profile is SPE if and only if , no player has
an incentive to deviate at any state while obeying the transitions.

Proof : 1 . Bottom line is that there's no need to check complex deviations
2

.
However , we must check unilateral , one-shot deviations in

every continuation or subgame every state of automation

t T+TA-1 ++ TA tHTAtI time

Sil , deviate - It
,

++TA]

Si" ,
deviate - It , ++TA-1]

Si"> Si . Si Si cannot improve by a one-period deviation



checking for SPE :

First , consider the proposal : => not SPE (in (D. R) ,
each would deviate)

on-path payoff : -1-8-8:...

one-shot deviation : 3-8-82 ... (more !)

SPE for8 close to 1 :
=> SPE in (U, 2)

18 =E At(8, 2) : <On-path : 6 + 68 + 63 ...

=> 8 I
off-path: 7-8+ 684 ...

At LD, R) : Son-Path : -1 + 66 + 682 ...

>=>

off-path : 3-8 + 682 ...

strict - carrot (opposedto grim trigger) :

punish hard for a limited time , then return to cooperation

Perfect Folk Theorem
Fudenberg & Maskin :

1 . Dimensionality condition : We need to be able to punish deviators individually,
so the stage game payoffs need to vary independently
across players.

2. Notation before proof :

Let V = <V , . ... Un) be the payoff that we want to support in SPE in the

infinitely repeated game.
Let the strategy profile that minmaxes i be mi = <mi . . . win)
Normalize payoffs so Vi = Hi(mi) = 0 ; however Uj(mi) Eo

Denote is maximal payoff in the stage game by vi.

pick w that is feasible and Ocw < v

Let 7 be such that Twi > Ti for all i.

Let 20 be so that Wi = (Wi
,

W-i + 2) < V is feasible for all i.

(that B
,

Wi = Wi , but Wi = Wy + E for all i and jtis



Illustration of the Notation :

z

target payoff

Twi > Vi feasible & IR Set

O T

payoffs when i is minmaxed

3. Construction of the Equilibrium
1
. Collaboration : Play stage game actions that generates v

, repeat unless player
j deviates, in that case go to phase It.

1.. Punishment : play mi (minmaxi) for exactly T periods.

ifnoonedeviates,thengotophane
#I

k

I8. Reconcilation : play stage game actions that generate wi

repeat unless player K deviates , in that case go to phase IIIP
.

P1 deviates in Phase I P2 deviates in Phase I'

P2 deviates in Phase II'



4. Formal Proof by one-shot deviation principle

Take-away on c -repetition Folk Theorems
1 . Any feasible and individually rational payoff can be sustained in

SPE of the indefinitely - repeated game for S sufficiently close to
1
.

Perfect Folk Theorem /Fudenberg & Maskin
,

1986)

2
.
Three key observations :

credible punishment need not be 'Nash reversion'

P Forgiveness : punishment need not last forever
Reconcilation : worsefor the deviator, better for punishers)



Renegotiation
Criticism towards repeated game SPE with 'punishment phases' :

Both players are worke off at the beginning of a punishment phase , so

they may want to renegotiate it.

Collaborative repeated game that not only subgame perfect
but also 'renegotiation proof' ?

Farrell and Maskin11989) :

Weak Renegotiation Proofness : No continuation play in the 'book of plays'
is Pareto dominated by any other.

book of play : A SPE consists of subgame- perfect continuation plays after every possible
history. Call this the 'book of plays' according to the SPE .

proof : otherwise players would renegotiate to the mutually preferred continuation
I*) Weak renegotiation proofness involves a comparison within the playbook of a given SPE,

not across different SPEs .

In PD , we support
(C , C) using :

3aC..

Moral :

Forgive but notForget .

spunishment must reward
the punisher before cooperation
can be resumed)



Finite Repetition Folk Theorems

v'. V" : Nash Equilibrium Payoffs
V : feasible payoff

v approximated as the average
payoff of a SPE provided T

sufficiently large

proof of Benoit & Krishna's Theorem :

set 7
* Sit. 3 =

* VizVi < F - V P1 conforms : V, + -
* VITV

P1 deviates : i + T
* Vi

-
* VI-V2"

= T2 - Vz => conforms> deviates : inequation2

Assume that TT*. Proposed egulibrium strategies :

1 . For t < T-T*, play to generate (VI , V2) unless someone deviates

2 . If no one has deviated at any+<T-T*, then from then on

alternate between playing (vi. VI) and ( Vi", Vz"
.

if Player 1 deviated at t< T-T*, then play (Vi , VI) to theend

s if Player 2 deviated at + <T-T*, then play (Vi" . V2" to the end

Remarks : PD has no NE
,
thus unique SPE = (D. D) on finite repetition



• OPEC’s goal is to constrain total oil production and keep oil prices high (“stable”).
• Explicit collusion: Each member country has a quota. Members’ production is 

difficult to monitor, but world-wide oil prices are publicly observable.
• A drop in oil price can be the result of a member country exceeding its quota or a 

fall in oil demand.

What goes wrong in PD, with (say) grim trigger punishment?
• Suppose Player 1 observes that Player 2 played D. But in equilibrium Player 1 knows that 

Player 2 did not deviate.
• Player 1 knows that if he carries out the required punishment (playing D at least once) then 

Player 2 likely observes D.
• But that would trigger punishment from Player 2. Since Player 1 prefers cooperation, he 

won’t play D as required.
• As a result, Player 2 can deviate without risking punishment. The equilibrium breaks down!

Construction in a familiar example:

Recent Developments
1
. Imperfect Public Monitoring

past actions are unobservable ,
there are public signals imperfectly

correlated with aggregate action

Example : the OPEC cartel

Cooperative / collusive equilibria may still be constructed under
imperfect public monitoring using trigger strategies.

price was potentially triggered by demand shocks

2
. Imperfect Private Monitoring

suppose at each-, each player observes a private signal that

agreeswiththeopponent'sactionwithprobability anddiffeadi



• Construct an equilibrium where i is indifferent between choosing C and D if j is 
playing C in the same round.

• Also make i indifferent between C and D in case j is playing D. So i is indifferent 
between C and D at all t, after any history.

• If Player j defects, i can punish her by decreasing the probability of playing C .

3. Ely , J. Valimaki (2002) and M
.
Piccione (2002) :

sustain" (C . c) forever in PD' via belief-free equilibrium

In such an equilibrium , i does not care whether he observed D by
mistake or he thinksI has really deviated.

Folk Theorem forall games: Horner and Olszewski(2006).

Insights for competition policy
... Makes collusion easier :

1 . multimarket contact (cheat on one market, retaliate onall
2

.
meet the competition clause : customers help detect defection.i 3

. most favored customer' clause ( =Trice commitment)
4

.
trade body that monitors and reports on thefirm's actions

... makes collusion harder :

1 . leniency towards whistleblowers
\ 2. business cycles

3. imperfect information , differentiation of products


